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1CHAPTER 1
INTRODUCTION

The i960® Jx microprocessor provides a new set of essential enhancements for an emerging class
of high-performance embedded applications. Based on the i960 core-architecture, it is
implemented in a proven 0.8 micron, three-layer metal process. Figure 1-1 identifies the
processor’s most notable features, each of which is described in subsections that follow the figure.
These features include:

Figure 1-1.  i960® Jx Microprocessor Functional Block Diagram

• instruction cache • data cache • bus controller unit

• on-chip data RAM • local register cache • interrupt controller

• timer units • memory-mapped control registers • external bus
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1.1 PRODUCT FEATURES

The i960 Jx processor brings many improvements to the existing i960 microprocessor family.
Enhancements include:

• Improvements to the core architecture

• Low power mode

• New instructions

• Improved cache design

• Enhanced bus control unit

• Improved interrupt performance

• JTAG testability

1.1.1 Instruction Cache

The i960 JF and JD processors employ a 4-Kbyte, two-way set associative instruction cache.
i960 JA processors feature a 2-Kbyte instruction cache. A mechanism is provided that allows
software to lock critical code within each “way” of the cache. The cache can be disabled and is
managed by use of the icctl and sysctl instructions, as described in section 4.4, “INSTRUCTION
CACHE” (pg. 4-4).

1.1.2 Data Cache

The i960 JF and JD processors feature a 2-Kbyte, direct-mapped data cache that is write-through
and write-allocate. i960 JA processors feature a 1-Kbyte data cache. These processors have a line
size of four words and implement a “natural” fill policy. Each line in the cache has a valid bit; to
reduce fetch latency on cache misses, each word within a line also has a valid bit. See section 4.5,
“DATA CACHE” (pg. 4-6) for details.

The data cache is managed through the dcctl instruction; see section 6.2.23, “dcctl (80960Jx-
Specific Instruction)” (pg. 6-41).

1.1.3 On-chip (internal) Data RAM

The processor’s 1 Kbyte internal data RAM is accessible to software with an access time of
1 cycle per word. This RAM is mapped to the physical address range of 0 to 3FFH. The first
64 bytes are reserved for the caching of dedicated-mode interrupt vectors; this reduces interrupt
latency for these interrupts. In addition, write-protection for the first 64 bytes is provided to guard
against the effects of using null pointers in ‘C’ and to protect the cached interrupt vectors.
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New versions of i960 processor compilers can take advantage of the internal data RAM; profiling
compilers can allocate the most frequently used variables into this RAM. See Section 4.1,
INTERNAL DATA RAM (pg. 4-1) for more detail.

1.1.4 Local Register Cache

The processor provides fast storage of local registers for call and return operations by using an
internal local register cache. This cache can store up to eight local register sets; additional register
sets must be saved in external memory.

The processor uses a 128-bit wide bus to store local register sets quickly to the register cache. To
reduce interrupt latency for high-priority interrupts, the number of sets that can be used by code
that is running at a lower priority or that is not interrupted can be restricted by programming the
register configuration word in the PRCB. This ensures that there are always sets available for high-
priority interrupt code without needing to save sets in external memory first. See Section 4.2,
LOCAL REGISTER CACHE (pg. 4-2) for more details. 

1.1.5 Interrupt Controller

The interrupt controller unit (ICU) provides a flexible, low-latency means for requesting interrupts.
It handles the posting of interrupts requested by hardware and software sources. Acting indepen-
dently from the core, the interrupt controller compares the priorities of posted interrupts with the
current process priority, off-loading this task from the core. The interrupt controller is compatible
with i960 CA/CF processors.

The interrupt controller provides the following features for handling hardware-requested
interrupts:

• Support of up to 240 external sources.

• Eight external interrupt pins, one non-maskable interrupt (NMI) pin, and two internal timer
sources for detection of hardware-requested interrupts.

• Edge or level detection on external interrupt pins.

• Debounce option on external interrupt pins.

The application program interfaces to the interrupt controller with six memory-mapped control
registers. The interrupt control register (ICON) and interrupt map control registers (IMAP0-
IMAP2) provide configuration information. The interrupt pending (IPND) register posts hardware-
requested interrupts. The interrupt mask (IMSK) register selectively masks hardware-requested
interrupts.

The interrupt inputs can be configured to be triggered on level-low or falling-edge signals.
Sampling of the input pins can be either debounced sampling or fast sampling.
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The i960 Jx processor has approximately 5 to 10 times faster interrupt servicing than the i960 Kx
processor. This is accomplished through a number of features:

• a hardware priority resolver removes the need to access the external interrupt table to resolve
interrupts

• caching of dedicated-mode interrupt vectors in the internal data RAM

• reserving frames in the local register cache for high-priority interrupts

• the ability to lock the code of interrupt service routines in the instruction-cache reduces the
fetch latency for starting up these routines

Chapter 13, INTERRUPT CONTROLLER discusses this in more detail.

1.1.6 Timer Support

The i960 Jx processor provides two identical 32-bit timers. Access to the timers is through
memory-mapped registers. The timers have a single-shot mode and auto-reload capabilities for
continuous operation. Each timer has an independent interrupt request to the i960 Jx processor
interrupt controller. See Chapter 14, TIMERS for a complete description.

1.1.7 Memory-Mapped Control Registers

Control registers in the i960 Jx processor are memory-mapped to allow for visibility to application
software. This includes registers for memory configuration, internally cached PRCB data,
breakpoint registers, and interrupt control. These registers are mapped to the architecturally
reserved address space range of FF00 0000H to FFFF FFFFH. The processor ensures that accesses
generate no external bus cycles.

Section 3.3, MEMORY-MAPPED CONTROL REGISTERS (pg. 3-5) discusses this in more
detail.

1.1.8 External Bus

The 32-bit multiplexed external bus connects the i960 Jx processor to memory and I/O. This high
bandwidth bus provides burst transfer capability allowing up to four successive 32-bit data word
transfers at a maximum rate of one word every clock cycle. In addition to the bus signals, the i960
Jx processor provides signals to allow external bus masters. Lastly, the processor provides variable
bus-width support (8-, 16-, and 32-bit). 
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1.1.9 Complete Fault Handling and Debug Capabilities

To aid in program development, the i960 Jx processor detects faults (exceptions). When a fault is
detected, the processors make an implicit call to a fault handling routine. Information collected for
each fault allows a program developer to quickly correct faulting code. The processors also allow
automatic recovery from most faults. 

To support system debug, the i960 architecture provides a mechanism for monitoring processor
activities through a software tracing facility. This processor can be configured to detect as many as
seven different trace events, including breakpoints, branches, calls, supervisor calls, returns,
prereturns and the execution of each instruction (for single-stepping through a program). The
processors also provide four breakpoint registers that allow break decisions to be made based upon
instruction or data addresses.

1.2 ABOUT THIS MANUAL

This i960® Jx Microprocessor User’s Manual provides detailed programming and hardware design
information for the i960 Jx microprocessors. It is written for programmers and hardware designers
who understand the basic operating principles of microprocessors and their systems.

This manual does not provide electrical specifications such as DC and AC parametrics, operating
conditions and packaging specifications. Such information is found in the 80960JA/JF Embedded
32-bit Microprocessor Data Sheet (order number 272504) and the 80960JD Embedded 32-bit
Microprocessor Data Sheet (order number 272596). 

For information on other i960 processor family products or the architecture in general, refer to
Intel's Solutions960® catalog (order number 270791). It lists all current i960 microprocessor
family-related documents, support components, boards, software development tools, debug tools
and more. 

This manual is organized in three parts; each part comprises multiple chapters and/or appendices.
The following briefly describes each part:

• Part I - Programming the i960 Jx Microprocessor (chapters 2-10) details the programming
environment for the i960 Jx devices. Described here are the processor's registers, instruction
set, data types, addressing modes, interrupt mechanism, external interrupt interface and fault
mechanism.

• Part II - System Implementation (chapters 11-17) identifies requirements for designing a
system around the i960 Jx components, such as external bus interface and interrupt controller.
Also described are programming requirements for the bus controller and processor initial-
ization.
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• Part III - Appendices includes quick references for hardware design and programming.
Appendices are also provided which describe the internal architecture, how to write
assembly-level code to exploit the parallelism of the processor and considerations for writing
software that is portable among all members of the i960 microprocessor family.

1.3 NOTATION AND TERMINOLOGY

This section defines terminology and textual conventions that are used throughout the manual. 

1.3.1 Reserved and Preserved

Certain fields in registers and data structures are described as being either reserved or preserved:

• A reserved field is one that may be used by other i960 architecture implementations. Correct
treatment of reserved fields ensures software compatibility with other i960 processors. The
processor uses these fields for temporary storage; as a result, the fields sometimes contain
unusual values.

• A preserved field is one that the processor does not use. Software may use preserved fields for
any function.

Reserved fields in certain data structures should be set to 0 (zero) when the data structure is
created. Set reserved fields to 0 when creating the Interrupt Table, Fault Table and System
Procedure Table. Software should not modify or rely on these reserved field values after a data
structure is created. When the processor creates the Interrupt or Fault Record data structure on the
stack, software should not depend on the value of the reserved fields within these data structures.

Some bits or fields in data structures and registers are shown as requiring specific encoding. These
fields should be treated as if they were reserved fields. They should be set to the specified value
when the data structure is created or when the register is initialized and software should not
modify or rely on the value after that.

Reserved bits in the Arithmetic Controls (AC) register can be set to 0 after initialization to ensure
compatibility with other i960 processor implementations. Reserved bits in the Process Controls
(PC) register and Trace Controls (TC) register should not be initialized. When the AC, PC and TC
registers are modified using modac, modpc or modtc instructions, the reserved locations in these
registers must be masked.

Certain areas of memory may be referred to as reserved memory in this reference manual.
Reserved — when referring to memory locations — implies that an implementation of the i960
architecture may use this memory for some special purpose. For example, memory-mapped
peripherals might be located in reserved memory areas on future implementations.
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1.3.2 Specifying Bit and Signal Values

The terms set and clear in this manual refer to bit values in register and data structures. If a bit is
set, its value is 1; if the bit is clear, its value is 0. Likewise, setting a bit means giving it a value of
1 and clearing a bit means giving it a value of 0. 

The terms assert and deassert refer to the logically active or inactive value of a signal or bit,
respectively. A signal is specified as an active 0 signal by an overbar. For example, the input is
active low and is asserted by driving the signal to a logic 0 value.

1.3.3 Representing Numbers

All numbers in this manual can be assumed to be base 10 unless designated otherwise. In text,
binary numbers are sometimes designated with a subscript 2 (for example, 0012). If it is obvious
from the context that a number is a binary number, the “2” subscript may be omitted.

Hexadecimal numbers are designated in text with the suffix H (for example, FFFF FF5AH). In
pseudo-code action statements in the instruction reference section and occasionally in text,
hexadecimal numbers are represented by adding the C-language convention “0x” as a prefix. For
example “FF7AH” appears as “0xFF7A” in the pseudo-code. 

1.3.4 Register Names

Memory-mapped registers and several of the global and local registers are referred to by their
generic register names, as well as descriptive names which describe their function. The global
register numbers are g0 through g15; local register numbers are r0 through r15. However, when
programming the registers in user-generated code, make sure to use the instruction operand. i960
microprocessor compilers recognize only the instruction operands listed in Table 1-1. Throughout
this manual, the registers’ descriptive names, numbers, operands and acronyms are used inter-
changeably, as dictated by context.

Table 1-1.  Register Terminology Conventions

Register Descriptive Name Register Number
Instruction 
Operand

Acronym

Global Registers g0 - g15 g0 - g14

Frame Pointer g15 fp FP

Local Registers r0 - r15 r3 - r15

Previous Frame Pointer r0 pfp PFP

Stack Pointer r1 sp SP

Return Instruction Pointer r2 rip RIP
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Groups of bits and single bits in registers and control words are called either bits, flags or fields.
These terms have a distinct meaning in this manual:

bit Controls a processor function; programmed by the user.

flag Indicates status. Generally set by the processor; certain flags are user program-
mable.

field A grouping of bits (bit field) or flags (flag field).

Specific bits, flags and fields in registers and control words are usually referred to by a register
abbreviation (in upper case) followed by a bit, flag or field name (in lower case). These items are
separated with a period. A position number designates individual bits in a field. For example, the
return type (rt) field in the previous frame pointer (PFP) register is designated as “PFP.rt”. The
least significant bit of the return type field is then designated as “PFP.rt0”.

1.4 RELATED DOCUMENTS

The following is a list of additional documentation that is useful when designing with and
programming the i960 microprocessor. Contact your local sales representative for more
information on obtaining Intel documents.

• 80960JA/JF Embedded 32-bit Microprocessor Data Sheet
Intel Order No. 272493

• 80960JD Embedded 32-bit Microprocessor Data Sheet 
Intel Order No. 272596

• Solutions960 Development Tools Catalog
Intel Order No. 270791
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CHAPTER 2
DATA TYPES AND MEMORY ADDRESSING MODES

2.1 DATA TYPES

The instruction set references or produces several data lengths and formats. The i960® Jx
processor supports the following data types: 

Figure 2-1 illustrates the data types (including the length and numeric range of each) supported by
the i960 architecture.

Figure 2-1.  Data Types and Ranges

• Integer (8, 16 and 32 bits) • Ordinal (unsigned integer 8, 16, 32 and 64 bits)

• Triple Word (96 bits) • Quad Word (128 bits)
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2.1.1 Integers

Integers are signed whole numbers that are stored and operated on in two’s complement format by
the integer instructions. Most integer instructions operate on 32-bit integers. Byte and short
integers are referenced by the byte and short classes of the load, store and compare instructions
only. Table 2-1 shows the supported integer sizes.

Integer load or store size (byte, short or word) determines how sign extension or data truncation is
performed when data is moved between registers and memory. 

For instructions ldib (load integer byte) and ldis (load integer short), a byte or short word in
memory is considered a two’s complement value. The value is sign-extended and placed in the 32-
bit register that is the destination for the load. 

For instructions stib (store integer byte) and stis (store integer short), a 32-bit two’s complement
number in a register is stored to memory as a byte or short-word. If register data is too large to be
stored as a byte or short word, the value is truncated and the integer overflow condition is
signalled. When an overflow occurs, either an AC register flag is set or the integer overflow fault
is generated. CHAPTER 9, FAULTS describes the integer overflow fault.

For instructions ld (load word) and st (store word), data is moved directly between memory and a
register with no sign extension or data truncation.

2.1.2 Ordinals

Ordinals or unsigned integer data types are stored and operated on as positive binary values. Table
2-2 shows the supported ordinal sizes.

Table 2-1.  80960Jx Supported Integer Sizes

Integer size Descriptive name Range

8 bit byte integers -27 to 27 -1

16 bit short integer -215 to 215 -1

32 bit integers -231 to 231 -1

Table 2-2.  80960Jx Supported Ordinal Sizes

Ordinal size Descriptive name Range

8-bit byte ordinals 0 to 28 -1

16-bit short ordinals 0 to 216 -1

32-bit ordinals 0 to 232 -1

64-bit long ordinals 0 to 264 -1
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The large number of instructions that perform logical, bit manipulation and unsigned arithmetic
operations reference 32-bit ordinal operands. When ordinals are used to represent Boolean values,
1 = TRUE and 0 = FALSE. Several extended arithmetic instructions reference the long ordinal data
type. Only load (ldob and ldos) store (stob and stos) and compare ordinal instructions reference
the byte and short ordinal data types. 

Sign and sign extension are not considered when ordinal loads and stores are performed; the values
may, however, be zero-extended or truncated. A short word or byte load to a register causes the
value loaded to be zero-extended to 32 bits. A short word or byte store to memory may cause an
ordinal value in a register to be truncated to fit its destination in memory. No overflow condition is
signalled in this case. 

2.1.3 Bits and Bit Fields

The processor provides several instructions that perform operations on individual bits or bit fields
within register operands. An individual bit is specified for a bit operation by giving its bit number
and register. Internal registers always follow little endian byte order; the least significant bit is bit 0
and the most significant bit is bit 31.

A bit field is any contiguous group of bits (up to 31 bits long) in a 32-bit register. Bit fields do not
span register boundaries. A bit field is defined by giving its length in bits (0-31) and the bit number
of its lowest numbered bit (0-31). 

Loading and storing bit and bit field data is normally performed using the ordinal load and store
instructions. Integer load and store instructions operate on two’s complement numbers. Depending
on the value, a byte or short integer load can result in sign extension of data in a register. A byte or
short store can signal an integer overflow condition.

2.1.4 Triple and Quad Words

Triple- and quad-words refer to consecutive words in memory or in registers. Triple- and quad-
word loads, stores and move instructions use these data types. These instructions facilitate data
block movement. No data manipulation (sign extension, zero extension or truncation) is performed
in these instructions.

Triple- and quad-word data types can be considered a superset of — or as encompassing — the
other data types described. The data in each word subset of a quad word is likely to be the operand
or result of an ordinal, integer, bit or bit field instruction.
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2.1.5 Register Data Alignment

Data in registers must adhere to specific alignment requirements:

• Long-word operands in registers must be aligned to double-register boundaries.

• Triple- and quad-word operands in registers must be aligned to quad-register boundaries.

For the i960 Jx processor, data alignment in memory is not required. User software can be
programmed to automatically handle unaligned memory accesses or to cause a fault.

2.1.6 Literals

The architecture defines a set of 32 literals that can be used as operands in many instructions.
These literals are ordinal (unsigned) values that range from 0 to 31 (5 bits). When a literal is used
as an operand, the processor expands it to 32 bits by adding leading zeros. If the instruction
requires an operand larger than 32 bits, the processor zero-extends the value to the operand size. If
a literal is used in an instruction that requires integer operands, the processor treats the literal as a
positive integer value.

2.2 BIT AND BYTE ORDERING IN MEMORY

All occurrences of numeric and non-numeric data types, except bits and bit fields, must start on a
byte boundary. Any data item occupying multiple bytes is stored as big-endian or little endian. The
following sections further describe byte ordering.

2.2.1 Bit Ordering

Bits within bytes are numbered such that if the byte is viewed as a value, bit 0 is the least
significant bit and bit 7 is the most significant bit. For numeric values spanning several bytes, bit
numbers higher than 7 indicate successively higher bit numbers in bytes with higher addresses.
Unless otherwise noted, bits in illustrations in this manual are ordered such that the higher-
numbered bits are to the left.

2.2.2 Byte Ordering

This i960 Jx processor can be programmed to use little or big endian byte ordering for memory
accesses. Byte ordering refers to how data items larger than one byte are assembled:

• For little endian byte order, the byte with the lowest address in a multi-byte data item has the
least significance.

• For big endian byte order, the byte with the lowest address in a multi-byte data item has the
most significance.
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For example, Table 2-3 shows four bytes of data in memory. Table 2-4 shows the differences
between little and big endian accesses for byte, short, word and long word data. Figure 2-2 shows
the resultant data placement in registers.

Once data is read into registers, byte order is no longer relevant. The lowest significant bit is
always bit 0. The most significant bit is always bit 31 for words, bit 15 for short words, and bit 7
for bytes. 

Byte ordering affects the way the i960 Jx processor handles bus accesses. See section 15.2.6, “Byte
Ordering and Bus Accesses” (pg. 15-28) for more information.

Table 2-3.  Memory Contents For Little and Big Endian Example

ADDRESS DATA

1000H 12H

1001H 34H

1002H 56H

1003H 78H

Table 2-4.  Byte Ordering for Little and Big Endian Accesses

Access Example
 Register Contents 

(Little Endian)
Register Contents 

(Big Endian)

Byte at 1000H ldob 0x1000, r3 12H 12H

Short at 1002H ldos 0x1002, r3 7856H 5678H

Word at 1000H ld 0x1000, r3 78563412H 12345678H

Long Word at 1000H ldl 0x1000, r4
78563412H (r4)

F0DEBC9AH (r5)

12345678H (r4)

F0DEBC9AH (r5)
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Figure 2-2.  Data Placement in Registers

2.3 MEMORY ADDRESSING MODES

The processor provides nine modes for addressing operands in memory. Each addressing mode is
used to reference a byte in the processor’s address space. Table 2-5 shows the memory addressing
modes, a brief description of each mode’s address elements and assembly code syntax. See Table
B-5 in Appendix B for more on addressing modes.

Table 2-5.  Memory Addressing Modes

Mode Description Assembler Syntax

Absolute offset offset exp

displacement displacement exp

Register Indirect abase (reg)

with offset abase + offset exp (reg)

with displacement abase + displacement exp (reg)

with index abase + (index*scale) (reg) [reg*scale]

with index and displacement abase + (index*scale) + displacement exp (reg) [reg*scale]

Index with displacement (index*scale) + displacement exp [reg*scale]

instruction pointer (IP) with 
displacement

IP + displacement + 8 exp (IP)

NOTE: reg is register and exp is an expression or symbolic label.

BYTE

SHORT

WORD

XX XX XX DD0

XX XX DD1 DD0

DD3 DD2 DD1 DD0

08 716 1524 2331

08 716 1524 2331

08 716 1524 2331

NOTES:
D’s are data transferred to/from memory
X’s are zeros for ordinal data
X’s are sign bit extensions for integer data
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2.3.1 Absolute

Absolute addressing modes allow a memory location to be referenced directly as an offset from
address 0H. At the instruction encoding level, two absolute addressing modes are provided:
absolute offset and absolute displacement, depending on offset size.

• For the absolute offset addressing mode, the offset is an ordinal number ranging from 0 to
4095. The absolute offset addressing mode is encoded in the MEMA machine instruction
format.

• For the absolute displacement addressing mode the offset is an integer (a displacement)
ranging from -231 to 231-1. The absolute displacement addressing mode is encoded in the
MEMB format.

Addressing modes and encoding instruction formats are described in CHAPTER 6,
INSTRUCTION SET REFERENCE.

At the assembly language level, the two absolute addressing modes use the same syntax. Typically,
development tools allow absolute addresses to be specified through arithmetic expressions (e.g.,
x + 44) or symbolic labels. After evaluating an address specified with the absolute addressing
mode, the assembler converts the address into an offset or displacement and selects the appropriate
instruction encoding format and addressing mode.

2.3.2 Register Indirect

Register indirect addressing modes use a register’s 32-bit value as a base for address calculation.
The register value is referred to as the address base (designated abase in Table 2-5). Depending on
the addressing mode, an optional scaled-index and offset can be added to this address base.

Register indirect addressing modes are useful for addressing elements of an array or record
structure. When addressing array elements, the abase value provides the address of the first array
element; an offset (or displacement) selects a particular array element. 

In register-indirect-with-index addressing mode, the index is specified using a value contained in a
register. This index value is multiplied by a scale factor. Allowable factors are 1, 2, 4, 8 and 16.

The two versions of register-indirect-with-offset addressing mode at the instruction encoding level
are register-indirect-with-offset and register-indirect-with-displacement. As with absolute
addressing modes, the mode selected depends on the size of the offset from the base address.

At the assembly language level, the assembler allows the offset to be specified with an expression
or symbolic label, then evaluates the address to determine whether to use register-indirect-with-
offset (MEMA format) or register-indirect-with-displacement (MEMB format) addressing mode.
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Register-indirect-with-index-and-displacement addressing mode adds both a scaled index and a
displacement to the address base. There is only one version of this addressing mode at the
instruction encoding level, and it is encoded in the MEMB instruction format.

2.3.3 Index with Displacement

A scaled index can also be used with a displacement alone. Again, the index is contained in a
register and multiplied by a scaling constant before displacement is added.

2.3.4 IP with Displacement

This addressing mode is used with load and store instructions to make them instruction pointer
(IP) relative. IP-with-displacement addressing mode references the next instruction’s address plus
the displacement plus a constant of 8. The constant is added because in a typical processor imple-
mentation the address has incremented beyond the next instruction address at the time of address
calculation. The constant simplifies IP-with-displacement addressing mode implementation.

2.3.5 Addressing Mode Examples

The following examples show how i960 addressing modes are encoded in assembly language.
Example 2-1 shows addressing mode mnemonics. Example 2-2 illustrates the usefulness of scaled
index and scaled index plus displacement addressing modes. In this example, a procedure named
array_op uses these addressing modes to fill two contiguous memory blocks separated by a
constant offset. A pointer to the top of the block is passed to the procedure in g0, the block size is
passed in g1 and the fill data in g2. Refer to APPENDIX D, MACHINE-LEVEL INSTRUCTION
FORMATS.
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Example 2-1.  Addressing Mode Mnemonics

st g4,xyz # Absolute; word from g4 stored at memory
# location designated with label xyz.

ldob (r3),r4 # Register indirect; ordinal byte from 
# memory location given in r3 loaded 
# into register r4 and zero extended.

stl g6,xyz(g5) # Register indirect with displacement; 
# double word from g6,g7 stored at memory
# location xyz + g5.

ldq (r8)[r9*4],r4 # Register indirect with index; quad-word
# beginning at memory location r8 + (r9
# scaled by 4) loaded into r4 through r7.

st g3,xyz(g4)[g5*2] # Register indirect with index and 
# displacement; word in g3 loaded to mem
# location g4 + xyz + (g5 scaled by 2).

ldis xyz[r12*1],r13 # Index with displacement; load short 
# integer at memory location xyz + r12 
# into r13 and sign extended.

st r4,xyz(IP) # IP with displacement; store word in r4 
# at memory location IP + xyz + 8.

Example 2-2.  Use of Index Plus Scaled Index Mode

array_op:
mov g0,r4 # Pointer to array is moved to r4.
subi 1,g1,r3 # Calculate index for the last array
b .I33 # element to be filled.

.I34:
st g2,(r4)[r3*4] # Fill array at index.
st g2,0x30(r4)[r3*4] # Fill array at index+constant offset.
subi 1,r3,r3 # Decrement index.

.I33:
cmpible 0,r3,.I34 # Store next array elements if
ret # index is not 0.





3
PROGRAMMING 
ENVIRONMENT





3-1

3

CHAPTER 3
PROGRAMMING ENVIRONMENT

This chapter describes the i960® Jx microprocessor’s programming environment including global
and local registers, control registers, literals, processor-state registers and address space.

3.1 OVERVIEW

The i960 architecture defines a programming environment for program execution, data storage and
data manipulation. Figure 3-1 shows the programming environment elements which include a
4 Gbyte (232 byte) flat address space, an instruction cache, global and local general-purpose
registers, a set of literals, control registers and a set of processor state registers. A register cache
saves the 16 procedure-specific local registers.

The processor defines several data structures located in memory as part of the programming
environment. These data structures handle procedure calls, interrupts and faults and provide
configuration information at initialization. These data structures are:

3.2 REGISTERS AND LITERALS AS INSTRUCTION OPERANDS

The i960 Jx processor uses only simple load and store instructions to access memory. All
operations take place at the register level. The processor uses 16 global registers, 16 local registers
and 32 literals (constants 0-31) as instruction operands.

The global register numbers are g0 through g15; local register numbers are r0 through r15. Several
of these registers are used for a dedicated function. For example, register r0 is the previous frame
pointer, often referred to as pfp. i960 processor compilers and assemblers recognize only the
instruction operands listed in Table 3-1. Throughout this manual, the registers’ descriptive names,
numbers, operands and acronyms are used interchangeably, as dictated by context.

• interrupt stack • control table • system procedure table

• local stack • fault table • process control block

• supervisor stack • interrupt table • initialization boot record
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Figure 3-1.   i960® Jx Microprocessor Programming Environment

3.2.1 Global Registers

Global registers are general-purpose 32-bit data registers that provide temporary storage for a
program’s computational operands. These registers retain their contents across procedure
boundaries. As such, they provide a fast and efficient means of passing parameters between
procedures.
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The i960 architecture supplies 16 global registers, designated g0 through g15. Register g15 is
reserved for the current Frame Pointer (FP), which contains the address of the first byte in the
current (topmost) stack frame. See section 7.1, “CALL AND RETURN MECHANISM” (pg. 7-2)
for a description of the FP and procedure stack.

After the processor is reset, register g0 contains device identification and stepping information.
The Device Identification sections in the 80960JA/JF Embedded 32-bit Microprocessor Data
Sheet and the 80960JD Embedded 32-bit Microprocessor Data Sheet describe information
contained in g0. g0 retains this information until it is written over by the user program. The device
identification and stepping information is also stored in a memory-mapped register located at
FF008710H.

3.2.2 Local Registers

The i960 architecture provides a separate set of 32-bit local data registers (r0 through r15) for each
active procedure. These registers provide storage for variables that are local to a procedure. Each
time a procedure is called, the processor allocates a new set of local registers and saves the calling
procedure’s local registers. The processor performs local register management; a program need not
explicitly save and restore these registers.

r3 through r15 are general purpose registers; r0 contains the Previous Frame Pointer (PFP); r1
contains the Stack Pointer (SP); r2 contains the Return Instruction Pointer (RIP). These are
discussed in CHAPTER 7, PROCEDURE CALLS.

The processor does not always clear or initialize the set of local registers assigned to a new
procedure. Therefore, initial register contents are unpredictable. Also, because the processor does
not initialize the local register save area in the newly created stack frame for the procedure, its
contents are equally unpredictable.

Table 3-1.  Registers and Literals Used as Instruction Operands

Instruction Operand Register Name (number) Function Acronym

g0 - g14 global (g0-g14) general purpose

fp global (g15) frame pointer FP

pfp local (r0) previous frame pointer PFP

sp local (r1) stack pointer SP

rip local (r2) return instruction pointer RIP

r3 - r15 local (r3-r15) general purpose

0-31 literals
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3.2.3 Register Scoreboarding

The processor uses register scoreboarding to allow concurrent execution of sequential instructions.
When an instruction that targets a destination register or group of registers executes, the processor
sets a register-scoreboard bit to indicate that this register or group of registers are being used in an
operation. If the instructions that follow do not require data from registers already in use, the
processor can execute those instructions before the prior instruction execution completes.

Software can use this feature to execute one or more single-cycle instructions concurrently with a
multi-cycle instruction (e.g., multiply or divide). Example 3-1 shows a case where register score-
boarding prevents a subsequent instruction from executing. It also illustrates overlapping instruc-
tions that do not have register dependencies.

Example 3-1.  Register Scoreboarding

3.2.4 Literals

The architecture defines a set of 32 literals that can be used as operands in many instructions.
These literals are ordinal (unsigned) values that range from 0 to 31 (5 bits). When a literal is used
as an operand, the processor expands it to 32 bits by adding leading zeros. If the instruction
requires an operand larger than 32 bits, the processor zero-extends the value to the operand size. If
a literal is used in an instruction that requires integer operands, the processor treats the literal as a
positive integer value.

3.2.5 Register and Literal Addressing and Alignment

Several instructions operate on multiple-word operands. For example, the load long instruction
(ldl) loads two words from memory into two consecutive registers. The register for the less-
significant word is specified in the instruction. The more-significant word is automatically loaded
into the next higher-numbered register.

In cases where an instruction specifies a register number and multiple, consecutive registers are
implied, the register number must be even if two registers are accessed (e.g., g0, g2) and an
integral multiple of 4 if three or four registers are accessed (e.g., g0, g4). If a register reference for
a source value is not properly aligned, the source value is undefined and an
OPERATION.INVALID_OPERAND fault is generated. If a register reference for a destination
value is not properly aligned, the registers to which the processor writes and the values written are

muli r4,r5,r6 # r6 is scoreboarded
addi r6,r7,r8 # addi must wait for the previous multiply

. # to complete

.

.
muli r4,r5,r10 # r10 is scoreboarded
and r6,r7,r8 # and instruction is executed concurrently 
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undefined. The processor then generates an OPERATION.INVALID_OPERAND fault. The
assembly language code in Example 3-2 shows an example of correct and incorrect register
alignment.

Example 3-2.  Register Alignment

Global registers, local registers and literals are used directly as instruction operands. Table 3-2 lists
instruction operands for each machine-level instruction format and positions which can be filled by
each register or literal.

3.3 MEMORY-MAPPED CONTROL REGISTERS

The i960 Jx family gives software the interface to easily read and modify internal control registers.
Each of these registers is accessed as a memory-mapped, 32-bit register with a unique memory
address. Access is accomplished through regular word load and store instructions; the processor
ensures that these accesses do not generate external bus cycles.

Table 3-2.  Allowable Register Operands

Operand (1)

Instruction 
Encoding

Operand Field
Local 

Register
Global 

Register
Literal

REG src1
src2
src/dst (as src)
src/dst (as dst)
src/dst (as both)

X
X
X
X
X

X
X
X
X
X

X
X
X

MEM src/dst
abase
index

X
X
X

X
X
X

COBR src1
src2
dst

X
X

X (2)

X
X

X (2)

NOTES:

1. “X” denotes the register can be used as an operand in a particular instruction field.

2. The COBR destination operands apply only to TEST instructions.

movl g3,g8 # INCORRECT ALIGNMENT - resulting value
. # in registers g8 and g9 is
. # unpredictable (non-aligned source)
.

movl g4,g8 # CORRECT ALIGNMENT
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3.3.1 Memory-Mapped Registers (MMR)

Portions of the Jx address space (addresses FF00 0000H through FFFF FFFFH) are reserved for
memory-mapped registers. These memory-mapped registers (MMR) are accessed through word-
operand memory instructions (atmod, sysctl, ld and st instructions) only. Accesses to this address
space do not generate external bus cycles. The latency in accessing each of these registers is one
cycle.

Each register has an associated access mode (user and supervisor modes) and access type (read
and write accesses). Table 3-3, Table 3-4 and Table 3-5 show all the memory-mapped registers and
the application mode of access.

The registers are partitioned into user and supervisor spaces based on their addresses. Addresses
FF00 0000H through FF00 7FFFH are allocated to user space memory-mapped registers;
Addresses FF00 8000H to FFFF FFFFH are allocated to supervisor space registers.

3.3.1.1 Restrictions on Instructions that Access Memory-Mapped Registers

The majority of memory-mapped registers can be accessed by both load (ld) and store (st) instruc-
tions. However some registers have restrictions on the types of accesses they allow. To ensure
correct operation, the access type restrictions for each register should be followed. The various
access types are listed in Table 3-3. The allowed access types for each register are indicated in the
access type column of Table 3-4 and Table 3-5.

Unless otherwise indicated by its access type, the modification of a memory-mapped register by a
st instruction is ensured to take effect completely before the next instruction starts execution.

Some operations require an atomic-read-modify-write sequence to a register -- most notably IPND
and IMSK. The atmod instruction provides a special mechanism to quickly modify the IPND and
IMSK registers in an atomic manner; on the i960 Jx microprocessor, it should not be used on any
other memory-mapped registers.

The sysctl instruction can also atomically modify the contents of a memory-mapped register; in
addition, it is the only method to read the breakpoint registers on the i960 Jx microprocessor; the
breakpoints can not be read using a ld instruction.

At initialization, the control table is automatically loaded into the on-chip control registers. This
action simplifies the user’s startup code by providing a transparent setup of the processor’s periph-
erals. See CHAPTER 11, INITIALIZATION AND SYSTEM REQUIREMENTS.
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3.3.1.2 Access Faults

Memory-mapped registers are meant to be accessed only as aligned, word-size registers with
adherence to the appropriate access mode. Accessing these registers in any other way can result in
faults or undefined operation. An access is performed using the following fault model:

1. The access must be a word-sized, word-aligned access; otherwise, an operation.unimple-
mented fault is generated. 

2. If the access is a store in user mode to an implemented supervisor location, a type.mismatch
fault is generated. It is unpredictable whether stores to unimplemented supervisor locations
cause a fault.

3. If the access is neither of the above, the access is attempted. Note that a MMR may generate
faults based on conditions specific to that MMR. (Example: trying to write the timer registers
in user mode when they have been allocated to supervisor only.)

4. When a store access to a register faults, the processor ensures that the store does not take
effect.

5. A load access of a reserved location returns an unpredictable value.

6. A store access to a reserved location should be avoided and is bad programming practice;
such a store can result in undefined operation of the processor if the location is in supervisor
space.

The i960 Jx microprocessor will ensure that faults resulting from MMR accesses are precise. 

Instruction fetches from the memory-mapped register space are not allowed and result in an
operation.unimplemented fault. 
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Table 3-3.  Access Types 

Access Type Description

R Read Read (ld instruction) accesses are allowed.

RO Read
Only

Only Read (ld instruction) accesses are allowed. Write (st instruction) 
accesses are ignored.

W Write Write (st instruction) accesses allowed.

R/W Read/Write ld, st, and sysctl instructions are allowed access.

WwG Write
when
Granted

Writing or Modifying (through a st or sysctl instruction) the register is 
only allowed when modification-rights to the register have been granted. 
An OPERATION.UNIMPLEMENTED fault occurs if an attempt is made to 
write the register before rights are granted. See section 10.2.7.2, 
“Hardware Breakpoints” (pg. 10-5).

Sysctl-RwG sysctl
Read 
when 
Granted

The value of the register can only be read by executing a sysctl instruction 
issued with the modify memory-mapped register message type. Modifi-
cation rights to the register must be granted first or an 
OPERATION.UNIMPLEMENTED fault occurs when the sysctl is 
executed. A ld instruction to the register returns unpredictable results.

AtMod atmod
update

Register can be updated quickly through the atmod instruction. The 
atmod ensures correct operation by performing the update of the register 
in an atomic manner which provides synchronization with previous and 
subsequent operations. This is a faster update mechanism than sysctl 
and is optimized for a few special registers,
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Table 3-4.  Supervisor Space Family Registers and Tables  (Sheet 1 of 3)

Register Name Memory-Mapped Address Access Type

Reserved FF00 8000H to FF00 80FFH —

(DLMCON) Default Logical Memory Configuration 
Register

FF00 8100H R/W

Reserved FF00 8104H —

(LMADR0) Logical Memory Address Register 0 FF00 8108H R/W

(LMMR0) Logical Memory Mask Register 0 FF00 810CH R/W

(LMADR1) Logical Memory Address Register 1 FF00 8110H R/W

(LMMR1) Logical Memory Mask Register 1 FF00 8114H R/W

Reserved FF00 8118H to FF00 83FFH —

(IPB0) Instruction Address Breakpoint Register 0 FF00 8400H Sysctl- RwG/WwG

(IPB1) Instruction Address Breakpoint Register 1 FF00 8404H Sysctl- RwG/WwG

Reserved FF00 8408H to FF00 841FH —

(DAB0) Data Address Breakpoint Register 0 FF00 8420H R/W, WwG

(DAB1) Data Address Breakpoint Register 1 FF00 8424H R/W, WwG

Reserved FF00 8428H to FF00 843FH —

(BPCON) Breakpoint Control Register FF00 8440H R/W, WwG

Reserved FF00 8444H to FF00 84FFH —

(IPND) Interrupt Pending Register FF00 8500H R/W, AtMod

(IMSK) Interrupt Mask Register FF00 8504H R/W, AtMod

Reserved FF00 8508H to FF00 850FH —

(ICON) Interrupt Control Word FF00 8510H R/W

Reserved FF00 8514H to FF00 851FH —

(IMAP0) Interrupt Map Register 0 FF00 8520H R/W

(IMAP1) Interrupt Map Register 1 FF00 8524H R/W

(IMAP2) Interrupt Map Register 2 FF00 8528H R/W

Reserved FF00 852CH to FF00 85FFH —
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(PMCON0_1) Physical Memory Control Register 0 FF00 8600H R/W

Reserved FF00 8604H —

(PMCON2_3) Physical Memory Control Register 1 FF00 8608H R/W

Reserved FF00 860CH —

(PMCON4_5) Physical Memory Control Register 2 FF00 8610H R/W

Reserved FF00 8614H —

(PMCON6_7) Physical Memory Control Register 3 FF00 8618H R/W

Reserved FF00 861CH —

(PMCON8_9) Physical Memory Control Register 4 FF00 8620H R/W

Reserved FF00 8624H —

(PMCON10_11) Physical Memory Control 
Register 5

FF00 8628H R/W

Reserved FF00 862CH —

(PMCON12_13) Physical Memory Control 
Register 6

FF00 8630H R/W

Reserved FF00 8634H —

(PMCON14_15) Physical Memory Control 
Register 7

FF00 8638H R/W

Reserved FF00 863CH to FF00 86F8H —

(BCON) Bus Configuration Control Register FF00 86FCH R/W

Table 3-4.  Supervisor Space Family Registers and Tables  (Sheet 2 of 3)

Register Name Memory-Mapped Address Access Type
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(PRCB) Processor Control Block Pointer FF00 8700H RO

(ISP) Interrupt Stack Pointer FF00 8704H R/W

(SSP) Supervisor Stack Pointer FF00 8708H R/W

Reserved FF00 870CH —

(DEVICEID) i960 Jx Device ID FF00 8710H RO

Reserved FF00 8714H to FFFF FFFFH —

Table 3-5.   User Space Family Registers and Tables 

Register Name Memory-Mapped Address Access Type

Reserved FF00 0000H to FF00 02FFH —

(TRR0) Timer Reload Register 0 FF00 0300H R/W

(TCR0) Timer Count Register 0 FF00 0304H R/W

(TMR0) Timer Mode Register 0 FF00 0308H R/W

Reserved FF00 030CH —

(TRR1) Timer Reload Register 1 FF00 0310H R/W

(TCR1) Timer Count Register 1 FF00 0314H R/W

(TMR1) Timer Mode Register 1 FF00 0318H R/W

Reserved FF00 031CH to FF00 7FFFH —

Table 3-4.  Supervisor Space Family Registers and Tables  (Sheet 3 of 3)

Register Name Memory-Mapped Address Access Type
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3.4 ARCHITECTURE-DEFINED DATA STRUCTURES

The architecture defines a set of data structures including stacks, interfaces to system procedures,
interrupt handling procedures and fault handling procedures. Table 3-6 defines the data structures
and references other sections of this manual where detailed information can be found.

The i960 Jx processor defines two initialization data structures: Initialization Boot Record (IBR)
and Process Control Block (PRCB). These structures provide initialization data and pointers to
other data structures in memory. When the processor is initialized, these pointers are read from the
initialization data structures and cached for internal use.

Pointers to the system procedure table, interrupt table, interrupt stack, fault table and control table
are specified in the processor control block. Supervisor stack location is specified in the system
procedure table. User stack location is specified in the user’s startup code. Of these structures, the
system procedure table, fault table, control table and initialization data structures may be in ROM;
the interrupt table and stacks must be in RAM. For software interrupts, the interrupt table must be
located in RAM. This is to allow the processor to modify the interrupt table.

Table 3-6.  Data Structure Descriptions

Structure (see also) Description

User and Supervisor Stacks
section 7.6, “USER AND SUPERVISOR 
STACKS” (pg. 7-19)

The processor uses these stacks when executing application 
code. 

System Procedure Table
section 3.7, “USER SUPERVISOR 
PROTECTION MODEL” (pg. 3-22)

section 7.5, “SYSTEM CALLS” (pg. 7-16)

Contains pointers to system procedures. Application code uses 
the system call instruction (calls) to access system procedures 
through this table. A system supervisor call switches execution 
mode from user mode to supervisor mode. When the processor 
switches modes, it also switches to the supervisor stack. 

Interrupt Table and Stack
section 8.4, “INTERRUPT TABLE” (pg. 
8-3)
section 8.5, “INTERRUPT STACK AND 
INTERRUPT RECORD” (pg. 8-5)

Contains vectors (pointers) to interrupt handling procedures. 
When an interrupt is serviced, a particular interrupt table entry is 
specified. A separate interrupt stack is provided to ensure that 
interrupt handling does not interfere with application programs.

Fault Table
section 9.3, “FAULT TABLE” (pg. 9-4)

Contains pointers to fault handling procedures. When the 
processor detects a fault, it selects a particular entry in the fault 
table. The architecture does not require a separate fault handling 
stack. Instead, a fault handling procedure uses the supervisor 
stack, user stack or interrupt stack, depending on processor 
execution mode in which the fault occurred and type of call made 
to the fault handling procedure. 

Control Table
section 11.3.3, “Control Table” (pg. 11-19)

Contains on-chip control register values. Control table values are 
moved to on-chip registers at initialization or with sysctl.
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3.5 MEMORY ADDRESS SPACE

The i960 Jx processor’s address space is byte-addressable with addresses running contiguously
from 0 to 232-1. Some is reserved or assigned special functions as shown in Figure 3-2.

Figure 3-2.  Memory Address Space

Physical addresses can be mapped to read-write memory, read-only memory and memory-mapped
I/O. The architecture does not define a dedicated, addressable I/O space. There are no subdivisions
of the address space such as segments. For memory management, an external memory
management unit (MMU) may subdivide memory into pages or restrict access to certain areas of
memory to protect a kernel’s code, data and stack. However, the processor views this address space
as linear.
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0000 03FFH
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FFFF FFFFH
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FEFF FF30H

FEFF FF60H
FEFF FF5FH
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Code/data
Architecturally Defined Data Structures

External Memory
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Internal (Optional Interrupt Vectors)

FEFF FFFFH
FF00 0000H

0000 0004H
0000 003FH

0000 0040H

Memory-Mapped Register Space

(Available For Data)

Initialization Boot Record (IBR)

Shading indicates internal memory.

1 Kbyte
Data RAM
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An address in memory is a 32-bit value in the range 0H to FFFF FFFFH. Depending on the
instruction, an address can reference in memory a single byte, short word (2 bytes), word
(4 bytes), double-word (8 bytes), triple-word (12 bytes) or quad-word (16 bytes). Refer to load
and store instruction descriptions in CHAPTER 6, INSTRUCTION SET REFERENCE for
multiple-byte addressing information.

3.5.1 Memory Requirements

The architecture requires that external memory has the following properties:

• Memory must be byte-addressable.

• Memory must support burst transfers (i.e., transfer blocks of up to 16 contiguous bytes or four
sequential transfers).

• Physical memory must not be mapped to reserved addresses that are specifically used by the
processor implementation.

• Memory must guarantee indivisible access (read or write) for addresses that fall within 16-
byte boundaries.

• Memory must guarantee atomic access for addresses that fall within 16-byte boundaries.

The latter two capabilities — indivisible and atomic access — are required only when multiple
processors or other external agents, such as DMA or graphics controllers, share a common
memory.

indivisible access Guarantees that a processor, reading or writing a set of memory locations,
completes the operation before another processor or external agent can read
or write the same location. The processor requires indivisible access within
an aligned 16-byte block of memory.

atomic access A read-modify-write operation. Here the external memory system must
guarantee that — once a processor begins a read-modify-write operation on
an aligned, 16-byte block of memory — it is allowed to complete the
operation before another processor or external agent is allowed access to
the same location. An atomic memory system can be implemented by using
the LOCK signal to qualify hold requests from external bus agents. LOCK
is asserted for the duration of an atomic memory operation.

The upper 16 Mbytes of the address space — addresses FF00 0000H through FFFF FFFFH — are
reserved for implementation-specific functions. 80960Jx programs cannot use this address space
except for accesses to memory-mapped registers. The processor will not generate any external bus
cycles to this memory. As shown in Figure 3-2, the initialization boot record is located just below
the i960 Jx processor’s reserved memory.
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The i960 Jx processor requires some special consideration when using the lower 1 Kbyte of
address space (addresses 0000H-03FFH). Loads and stores directed to these addresses access
internal memory; instruction fetches from these addresses are not allowed for this processor. See
section 4.1, “INTERNAL DATA RAM” (pg. 4-1). No external bus cycles are generated to this
address space.

3.5.2 Data and Instruction Alignment in the Address Space

Instructions, program data and architecturally defined data structures can be placed anywhere in
non-reserved address space while adhering to these alignment requirements:

• Align instructions on word boundaries.

• Align all architecturally defined data structures on the boundaries specified in Table 3-7.

• Align instruction operands for the atomic instructions (atadd, atmod) to word boundaries in
memory.

The i960 Jx processor can perform unaligned load or store accesses. The processor handles a non-
aligned load or store request by:

• Automatically servicing a non-aligned memory access with microcode assistance as described
in section 15.2.5, “Data Alignment” (pg. 15-22).

• After the access is completed, the processor generates an OPERATION.UNALIGNED fault.

The method of handling faults is selected at initialization based on the value of the Fault Configu-
ration Word in the Process Control Block. See section 11.3.1.2, “Process Control Block (PRCB)”
(pg. 11-14).

Table 3-7.  Alignment of Data Structures in the Address Space

Data Structure Alignment

System Procedure Table 4 byte

Interrupt Table 4 byte

Fault Table 4 byte

Control Table 16 byte

User Stack 16 byte

Supervisor Stack 16 byte

Interrupt Stack 16 byte

Process Control Block 16 byte

Initialization Boot Record Fixed at FEFF FF30H
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3.5.3 Byte, Word and Bit Addressing

The processor provides instructions for moving data blocks of various lengths from memory to
registers (LOAD) and from registers to memory (STORE). Allowable sizes for blocks are bytes,
short words (2 bytes), words (4 bytes), double words, triple words and quad words. For example,
stl (store long) stores an 8 byte (double word) data block in memory.

The most efficient way to move data blocks longer than 16 bytes is to move them in quad-word
increments, using quad-word instructions ldq and stq.

When a data block is stored in memory, normally the block’s least significant byte is stored at a
base memory address and the more significant bytes are stored at successively higher byte
addresses. This method of ordering bytes in memory is referred to as “little endian” ordering.

The i960 Jx processor also provides the option for ordering bytes in an opposite manner in
memory. The block’s most significant byte is stored at the base address and the less significant
bytes are stored at successively higher addresses. This byte ordering scheme — referred to as “big
endian” — applies to data blocks which are short words or words. For more about byte ordering,
see section 15.2.5, “Data Alignment” (pg. 15-22).

When loading a byte, short word or word from memory to a register, the block’s least significant
bit is always loaded in register bit 0. When loading double words, triple words and quad words,
the least significant word is stored in the base register. The more significant words are then stored
at successively higher numbered registers. Bits can only be addressed in data that resides in a
register: bit 0 in a register is the least significant bit, bit 31 is the most significant bit.

3.5.4 Internal Data RAM

The i960 Jx processor has 1 Kbyte of on-chip data RAM. Only data accesses are allowed in this
region. Portions of the data RAM can also be reserved for functions such as caching interrupt
vectors. The internal RAM is fully described in CHAPTER 4, CACHE AND ON-CHIP DATA
RAM.

3.5.5 Instruction Cache

The instruction cache enhances performance by reducing the number of instruction fetches from
external memory. The cache provides fast execution of cached code and loops of code in the cache
and also provides more bus bandwidth for data operations in external memory. The i960 JF and JD
processors’ instruction cache is a 4 Kbyte, two-way set associative cache, organized in two sets of
four-word lines. i960 JA processors feature a 2 Kbyte instruction cache. For more information, see
CHAPTER 4, CACHE AND ON-CHIP DATA RAM.
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3.5.6 Data Cache

The data cache on the i960 JF and JD processors is a write-through 2 Kbyte direct-mapped cache.
i960 JA processors feature a 1 Kbyte data cache. For more information, see CHAPTER 4, CACHE
AND ON-CHIP DATA RAM.

3.6 PROCESSOR-STATE REGISTERS

The architecture defines four 32-bit registers that contain status and control information:

3.6.1 Instruction Pointer (IP) Register

The IP register contains the address of the instruction currently being executed. This address is
32 bits long; however, since instructions are required to be aligned on word boundaries in memory,
the IP’s two least-significant bits are always 0 (zero).

All i960 processor instructions are either one or two words long. The IP gives the address of the
lowest-order byte of the first word of the instruction.

The IP register cannot be read directly. However, the IP-with-displacement addressing mode
allows the IP to be used as an offset into the address space. This addressing mode can also be used
with the lda (load address) instruction to read the current IP value.

When a break occurs in the instruction stream — due to an interrupt, procedure call or fault — the
IP of the next instruction to be executed is stored in local register r2 which is usually referred to as
the return IP or RIP register. Refer to CHAPTER 7, PROCEDURE CALLS for further discussion.

3.6.2 Arithmetic Controls (AC) Register

The AC register (Figure 3-3) contains condition code flags, integer overflow flag, mask bit and a
bit that controls faulting on imprecise faults. Unused AC register bits are reserved. 

• Instruction Pointer (IP) register • Arithmetic Controls (AC) register

• Process Controls (PC) register • Trace Controls (TC) register
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Figure 3-3.  Arithmetic Controls (AC) Register

3.6.2.1 Initializing and Modifying the AC Register

At initialization, the AC register is loaded from the Initial AC image field in the Process Control
Block. Reserved bits are set to 0 in the AC Register Initial Image. Refer to CHAPTER 11,
INITIALIZATION AND SYSTEM REQUIREMENTS.

After initialization, software must not modify or depend on the AC register’s initial image in the
PRCB. The modify arithmetic controls (modac) instruction can be used to examine and/or modify
any of the register bits. This instruction provides a mask operand that can be used to limit access to
the register’s specific bits or groups of bits, such as the reserved bits.

The processor automatically saves and restores the AC register when it services an interrupt or
handles a fault. The processor saves the current AC register state in an interrupt record or fault
record, then restores the register upon returning from the interrupt or fault handler.

3.6.2.2 Condition Code

The processor sets the AC register’s condition code flags (bits 0-2) to indicate the results of certain
instructions, such as compare instructions. Other instructions, such as conditional branch instruc-
tions, examine these flags and perform functions as dictated by the state of the condition code
flags. Once the processor sets the condition code flags, the flags remain unchanged until another
instruction executes that modifies the field.

28 24 20 16 12 8 4 031

 

Condition Code Bits - AC.cc

Integer-Overflow Flag - AC.of
(0) No Overflow
(1) Overflow

Integer Overflow Mask Bit - AC.om
(0) No Mask
(1) Mask

No-Imprecise-Faults Bit- AC.nif
(0) Some Faults are Imprecise
(1) All Faults are Precise

Reserved
(Initialize to 0)

c
c
0

c
c
1

c
c
2

o
m

n
i
f

o
f

F_CA004A



PROGRAMMING ENVIRONMENT

3-19

3

Condition code flags show true/false conditions, inequalities (greater than, equal or less than
conditions) or carry and overflow conditions for the extended arithmetic instructions. To show true
or false conditions, the processor sets the flags as shown in Table 3-8. To show equality and
inequalities, the processor sets the condition code flags as shown in Table 3-9.

The terms ordered and unordered are used when comparing floating point numbers, which are not
supported by the i960 Jx processor implementation.

To show carry out and overflow, the processor sets the condition code flags as shown in Table
3-10.

Certain instructions, such as the branch-if instructions, use a 3 bit mask to evaluate the condition
code flags. For example, the branch-if-greater-or-equal instruction (bge) uses a mask of 0112 to
determine if the condition code is set to either greater-than or equal. Conditional instructions use
similar masks for the remaining conditions such as: greater-or-equal (0112), less-or-equal (1102)
and not-equal (1012). The mask is part of the instruction opcode; the instruction performs a bitwise
AND of the mask and condition code.

Table 3-8.  Condition Codes for True or False Conditions

Condition Code Condition

0102 true

0002 false

Table 3-9.  Condition Codes for Equality and Inequality Conditions

Condition Code Condition

0002 unordered (false)

0012 greater than (true)

0102 equal

1002 less than

Table 3-10.  Condition Codes for Carry Out and Overflow

Condition Code Condition

01X2 carry out

0X12 overflow
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The AC register integer overflow flag (bit 8) and integer overflow mask bit (bit 12) are used in
conjunction with the arithmetic-integer-overflow fault. The mask bit disables fault generation.
When the fault is masked and integer overflow is encountered, the processor — instead of
generating a fault — sets the integer overflow flag. If the fault is not masked, the fault is allowed
to occur and the flag is not set.

Once the processor sets this flag, it never implicitly clears it; the flag remains set until the program
clears it. Refer to the discussion of the arithmetic-integer-overflow fault in CHAPTER 9, FAULTS
for more information about the integer overflow mask bit and flag.

The no imprecise faults bit (bit 15) determines whether or not faults are allowed to be imprecise. If
set, all faults are required to be precise; if clear, certain faults can be imprecise. See section 9.9,
“PRECISE AND IMPRECISE FAULTS” (pg. 9-19) for more information.

3.6.3 Process Controls (PC) Register

The PC register (Figure 3-4) is used to control processor activity and show the processor’s current
state. PC register execution mode flag (bit 1) indicates that the processor is operating in either user
mode (0) or supervisor mode (1). The processor automatically sets this flag on a system call when
a switch from user mode to supervisor mode occurs and it clears the flag on a return from
supervisor mode. (User and supervisor modes are described in section 3.7, “USER SUPERVISOR
PROTECTION MODEL” (pg. 3-22).

Figure 3-4.  Process Controls (PC) Register
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PC register state flag (bit 13) indicates processor state: executing (0) or interrupted (1). If the
processor is servicing an interrupt, its state is interrupted. Otherwise, the processor’s state is
executing. 

While in the interrupted state, the processor can receive and handle additional interrupts. When
nested interrupts occur, the processor remains in the interrupted state until all interrupts are
handled, then switches back to executing state on the return from the initial interrupt procedure.

PC register priority field (bits 16 through 20) indicates the processor’s current executing or
interrupted priority. The architecture defines a mechanism for prioritizing execution of code,
servicing interrupts and servicing other implementation-dependent tasks or events. This
mechanism defines 32 priority levels, ranging from 0 (the lowest priority level) to 31 (the highest).
The priority field always reflects the current priority of the processor. Software can change this
priority by use of the modpc instruction.

The processor uses the priority field to determine whether to service an interrupt immediately or to
post the interrupt. The processor compares the priority of a requested interrupt with the current
process priority. When the interrupt priority is greater than the current process priority or equal to
31, the interrupt is serviced; otherwise it is posted. When an interrupt is serviced, the process
priority field is automatically changed to reflect interrupt priority. See CHAPTER 13,
INTERRUPT CONTROLLER.

PC register trace enable bit (bit 0) and trace fault pending flag (bit 10) control the tracing function.
The trace enable bit determines whether trace faults are globally enabled (1) or globally
disabled (0). The trace fault pending flag indicates that a trace event has been detected (1) or not
detected (0). The tracing function are further described in Chapter 10.

3.6.3.1 Initializing and Modifying the PC Register

Any of the following three methods can be used to change bits in the PC register:

• Modify process controls instruction (modpc)

• Alter the saved process controls prior to a return from an interrupt handler

• Alter the saved process controls prior to a return from a fault handler

modpc directly reads and modifies the PC register. A TYPE.MISMATCH fault is generated if
modpc is executed in user mode with a non-zero mask. As with modac, modpc provides a mask
operand that can be used to limit access to specific bits or groups of bits in the register. modpc can
be used in user mode to read the current PC register.

In the latter two methods, the interrupt or fault handler changes process controls in the interrupt or
fault record that is saved on the stack. Upon return from the interrupt or fault handler, the modified
process controls are copied into the PC register. The processor must be in supervisor mode prior to
return for modified process controls to be copied into the PC register.
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When process controls are changed as described above, the processor recognizes the changes
immediately except for one situation: if modpc is used to change the trace enable bit, the
processor may not recognize the change before the next four non-branch instructions are executed.

After initialization (hardware reset), the process controls reflect the following conditions:

When the processor is reinitialized with a sysctl reinitialize message, the PC register is not
changed.

Normally, modpc is not used to modify execution mode or trace fault state flags except under
special circumstances, such as in initialization code.

3.6.4 Trace Controls (TC) Register

The TC register, in conjunction with the PC register, controls processor tracing facilities. It
contains trace mode enable bits and trace event flags which are used to enable specific tracing
modes and record trace events, respectively. Trace controls are described in CHAPTER 10,
TRACING AND DEBUGGING.

3.7 USER SUPERVISOR PROTECTION MODEL

The processor can be in either of two execution modes: user or supervisor. The capability of a
separate user and supervisor execution mode creates a code and data protection mechanism
referred to as the user supervisor protection model. This mechanism allows code, data and stack
for a kernel (or system executive) to reside in the same address space as code, data and stack for
the application. The mechanism restricts access to all or parts of the kernel by the application
code. This protection mechanism prevents application software from inadvertently altering the
kernel.

3.7.1 Supervisor Mode Resources

Supervisor mode is a privileged mode which provides several additional capabilities over user
mode.

• When the processor switches to supervisor mode, it also switches to the supervisor stack.
Switching to the supervisor stack helps maintain a kernel’s integrity. For example, it allows
system debugging software or a system monitor to be accessed, even if an application’s
program destroys its own stack.

• priority = 31 • execution mode = supervisor

• trace enable = disabled • state = interrupted
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• In supervisor mode, the processor is allowed access to a set of supervisor-only functions and
instructions. For example, the processor uses supervisor mode to handle interrupts and trace
faults. Operations that can modify interrupt controller behavior or reconfigure bus controller
characteristics can only be performed in supervisor mode. These functions include modifi-
cation of control registers or internal data RAM that is dedicated to interrupt controllers. A
fault is generated if supervisor-only operations are attempted while the processor is in user
mode. Table 3-11 lists supervisor-only operations and the fault which is generated if the
operation is attempted in user mode.

The PC register execution mode flag specifies processor execution mode. The processor automati-
cally sets and clears this flag when it switches between the two execution modes.

3.7.2 Using the User-Supervisor Protection Model

A program switches from user mode to supervisor mode by making a system-supervisor call (also
referred to as a supervisor call). A system-supervisor call is a call executed with the call-system
instruction (calls). With calls, the IP for the called procedure comes from the system procedure
table. An entry in the system procedure table can specify an execution mode switch to supervisor
mode when the called procedure is executed. calls and the system procedure table thus provide a
tightly controlled interface to procedures which can execute in supervisor mode. Once the
processor switches to supervisor mode, it remains in that mode until a return is performed to the
procedure that caused the original mode switch.

Table 3-11.  Supervisor-Only Operations and Faults Generated in User Mode

Supervisor-Only Operation User-Mode Fault

dcctl (data cache control) TYPE.MISMATCH

halt (halt CPU) TYPE.MISMATCH

icctl (instruction cache control) TYPE.MISMATCH

intctl (global interrupt enable and disable) TYPE.MISMATCH

intdis (global interrupt disable) TYPE.MISMATCH

inten (global interrupt enable) TYPE.MISMATCH

modpc (modify process controls w/ non-zero 
mask)

TYPE.MISMATCH

sysctl (system control) TYPE.MISMATCH

Protected internal data RAM or Supervisor MMR 
space write

TYPE.MISMATCH

Protected timer unit registers TYPE.MISMATCH



PROGRAMMING ENVIRONMENT

3-24

Interrupts and faults can cause the processor to switch from user to supervisor mode. When the
processor handles an interrupt, it automatically switches to supervisor mode. However, it does not
switch to the supervisor stack. Instead, it switches to the interrupt stack. Fault table entries
determine if a particular fault will transition the processor from user to supervisor mode. 

If an application does not require a user-supervisor protection mechanism, the processor can
always execute in supervisor mode. At initialization, the processor is placed in supervisor mode
prior to executing the first instruction of the application code. The processor then remains in
supervisor mode indefinitely, as long as no action is taken to change execution mode to user mode.
The processor does not need a user stack in this case.
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CHAPTER 4
CACHE AND ON-CHIP DATA RAM

This chapter describes the structure and user configuration of all forms of on-chip storage,
including caches (data, local register and instruction) and data RAM.

4.1 INTERNAL DATA RAM

Internal data RAM is mapped to the lower 1 Kbyte (0 to 03FFH) of the address space. Loads and
stores, with target addresses in internal data RAM, operate directly on the internal data RAM; no
external bus activity is generated. Data RAM allows time-critical data storage and retrieval without
dependence on external bus performance. Only data accesses are allowed to the internal data
RAM; instructions cannot be fetched from the internal data RAM. Instruction fetches directed to
the data RAM cause an OPERATION.UNIMPLEMENTED fault to occur.

Internal data RAM locations are never cached in the data cache. Logical Memory Template bits
controlling caching are ignored for data RAM accesses. However, the byte-ordering of the internal
data RAM is controlled by the byte-endian control bit in the DLMCON register.

Some internal data RAM locations are reserved for alternate functions other than general data
storage. The first 64 bytes of data RAM may be used to cache interrupt vectors; this reduces
latency for these interrupts. The word at location 0000H is always reserved for the cached NMI
vector. With the exception of the cached NMI vector, other reserved portions of the data RAM can
be used for data storage when the alternate function is not used. All locations of the internal data
RAM can be read in both supervisor and user mode.

The first 64 bytes (0000H to 003FH) of internal RAM are always user-mode write-protected. This
portion of data RAM can be read while executing in user or supervisor mode; however, it can only
be modified in supervisor mode. This area can also be write-protected from supervisor mode writes
by setting the BCON.SIRP bit. See section 12.4, “Physical Memory Attributes at Initialization”
(pg. 12-6). Protecting this portion of the data RAM from user and supervisor rights preserves the
interrupt vectors that may be cached there. See section 13.5.2.1, “Vector Caching Option” (pg.
13-22).
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Figure 4-1.  Internal Data RAM

The remainder of the internal data RAM can always be written from supervisor mode. User mode
write protection is optionally selected for the rest of the data RAM (40H to 3FFH) by setting the
Bus Configuration Register RAM protection bit (BCON.irp). Writes to internal data RAM
locations while they are protected generate a TYPE.MISMATCH fault. See section 12.4.1, “Bus
Control (BCON) Register” (pg. 12-6), for the format of the BCON register.

New versions of i960 processor compilers can take advantage of internal data RAM; profiling
compilers, such as those offered by Intel, can allocate the most frequently used variables into this
RAM. 

4.2 LOCAL REGISTER CACHE

The i960 Jx processor provides fast storage of local registers for call and return operations by
using an internal local register cache (also known as a stack frame cache). Up to eight local
register sets can be contained in the cache before sets must be saved in external memory. The
register set is all the registers (i.e. r0 through r15). The processor uses a 128-bit wide bus to store
local register sets quickly to the register cache. An integrated procedure call mechanism saves the
current local register set when a call is executed. A local register set is saved into a frame in the
local register cache, one frame per register set. When the eighth frame is saved, the oldest set of
local registers is flushed to the stack in external memory, which frees one frame.

NMI
0000 0000H

Optional Interrupt Vectors

0000 0004H

0000 0003FH

0000 03FFH

Available for Data
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To decrease interrupt latency, software can reserve a number of frames in the local register cache
solely for high priority interrupts (interrupted state and process priority greater than or equal to 28).
The remaining frames in the cache can be used by all code including high-priority interrupts. When
a frame is reserved for high-priority interrupts, the local registers of the code interrupted by a high-
priority interrupt can be saved to the local register cache without causing a frame flush to memory.
This providing that the local register cache is not already full. Thus, the register allocation for the
implicit interrupt call does not incur the latency of a frame flush.

Software can reserve frames for high-priority interrupt code by writing bits 10 through 8 of the
register cache configuration word in the PRCB. This value indicates the number of free frames
within the register cache that can be used by high-priority interrupts only. Any attempt by non-
critical code to reduce the number of free frames below this value will result in a frame flush to
external memory. The free frame check is performed only when a frame is pushed, which occurs
only for an implicit or explicit call. The following pseudo-code illustrates the operation of the
register cache when a frame is pushed:

frames_for_non_critical = 7 - RCW[10:8];
if (interrupt_request)

set_interrupt_handler_PC;
push_frame;
number_of_frames = number_of_frames + 1;
if (number_of_frames = 8) {

flush_register_frame(oldest_frame);
number_of_frames = number_of_frames - 1; }

else if ( number_of_frames = (frames_for_non_critical + 1) 
&& 
             (PC.priority < 28 || PC.state != interrupted) )

     { flush_register_frame(oldest_frame);
       number_of_frames = number_of_frames - 1; }

The valid range for the number of reserved free frames is 0 to 7. Setting the value to 0 reserves no
frames for exclusive-use by high-priority interrupts. Setting the value to 1, reserves 1 frame for
high-priority interrupts and 6 frames to be shared by all code. Setting the value to 7 causes the
register cache to become disabled for non-critical code.

4.3 BIG ENDIAN ACCESSES TO INTERNAL RAM AND DATA CACHE

Big-endian accesses to the internal data-RAM and data cache are supported. The default byte-order
for data accesses is programmed in DLMCON.be to be either little or big-endian. On the i960 Jx
processor DLMCON.be controls the default byte-order for all internal (i.e. on-chip data ram and
data cache) and external accesses. See section 12.6, “Programming the Logical Memory
Attributes” (pg. 12-8) for more details.
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4.4 INSTRUCTION CACHE

The i960 JF and JD processors feature a 4 Kbyte, 2-way set associative instruction cache
organized in lines of four 32-bit words. The JA processor features a 2 Kbyte, 2-way set associative
instruction cache. The cache provides fast execution of cached code and loops of code in the cache
and provides more bus bandwidth for data operations in external memory. To optimize cache
updates when branches or interrupts are executed, each word in the line has a separate valid bit.
When requested instructions are found in the cache, the instruction fetch time is one cycle for up to
four words.

A mechanism to lock critical code within a way of the cache is provided as well as a mechanism to
disable the cache. The cache is managed through the icctl and sysctl instructions.

Cache misses cause the processor to issue a double-word or a quad-word fetch, based on the
location of the Instruction Pointer:

• If the IP is at word 0 or word 1 of a 16-byte block, a four-word fetch is initiated. 

• If the IP is at word 2 or word 3 of a 16-byte block, a two-word fetch is initiated. 

4.4.1 Enabling and Disabling the Instruction Cache

Enabling the instruction cache is controlled on reset or initialization by the instruction cache
configuration word in the Process Control Block (PRCB), see Figure 11-6. If bit 16 in the
instruction cache configuration word is set, the instruction cache is disabled and all instruction
fetches are directed to external memory. Disabling the instruction cache is useful for tracing
execution in a software debug environment. 

The instruction cache remains disabled until one of three operations is performed:

• The processor is reinitialized with a new value in the instruction cache configuration word

• icctl is issued with the enable instruction cache operation

• sysctl is issued with the configure instruction cache message type and cache configuration
mode other than disable cache

4.4.2 Operation While The Instruction Cache Is Disabled

Disabling the instruction cache does not disable the instruction buffering that may occur within the
instruction fetch unit. A four-word instruction buffer is always enabled, even when the cache is
disabled. 
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There is one tag and four word-valid bits associated with the buffer. Because there is only one tag
for the buffer, any “miss” within the buffer causes the following:

• All four words of the buffer are invalidated.

• A new tag value for the required instruction is loaded.

• The required instruction(s) are fetched from external memory.

Depending on the alignment of the “missed” instruction, either two or four words of instructions
are fetched and only the valid bits corresponding to the fetched words are set in the buffer. No
external instruction fetches are generated until there is a “miss” within the buffer, even in the
presence of forward and backward branches.

4.4.3 Locking Instructions in the Instruction Cache

The processor can be directed to load a block of instructions into the cache and then disable all
normal updates to the cache. This cache load-and-lock mechanism is provided to minimize latency
on program control transfers to key operations such as interrupt service routines. The block size
that can be loaded and locked on the i960 Jx microprocessor is one way of the cache. 

An icctl or sysctl instruction is issued with a configure-instruction-cache message type to select
the load-and-lock mechanism. When the lock option is selected, the processor loads the cache
starting at an address specified as an operand to the instruction. 

4.4.4 Instruction Cache Visibility

Instruction cache status can be determined with an icctl issued with an instruction-cache status
message. To facilitate debugging, the instruction cache contents, instructions, tags and valid bits
can be written to memory. This is done by an icctl that is issued with the store cache operation.

4.4.5 Instruction Cache Coherency

Bus snooping is not implemented in the i960 Jx instruction cache. The cache does not detect
modification to program memory by loads, stores or actions of other bus masters. Several
situations may require program memory modification, such as uploading code at initialization or
uploading code from a backplane bus or a disk drive. 

The application program is responsible for synchronizing its own code modification and cache
invalidation. In general, a program must ensure that modified code space is not accessed until
modification and cache-invalidate are completed. To achieve cache coherency, instruction cache
contents should be invalidated after code modification is complete. Both the icctl and the sysctl
instruction can be used to invalidate the instruction cache for the i960 Jx component.
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4.5 DATA CACHE

The i960 JF and JD processors feature a 2 Kbyte, direct-mapped cache which enhances
performance by reducing the number of data load and store accesses to external memory. i960 JA
processors have a 1 Kbyte data cache. The cache is write-through and write-allocate (as is the i960
CF processor data cache). It has a line size of 4 words and implement a “natural” fill policy. Each
line in the cache has a valid bit. To reduce fetch latency on cache misses, each word within a line
also has a valid bit. Caches are managed through the dcctl instruction. 

User settings in the memory region configuration registers LMCON0-1 and DLMCON determine
which data accesses are cacheable or non-cacheable based on memory region. 

4.5.1 Enabling and Disabling the Data Cache

To cache data, two conditions must be ensured:

1. The data cache must be globally enabled. A dcctl issued with an enable data cache message
will enable the cache. On reset or initialization, the data cache is always disabled and all
valid bits are set to zero. 

2. Data caching for a location must be enabled by the corresponding logical memory
template, or by the default logical memory template if no other template applies. See
section 12.6, “Programming the Logical Memory Attributes” (pg. 12-8) for more details on
logical memory templates. 

When the data cache is disabled, all data fetches are directed to external memory. Disabling the
data cache is useful for debugging or monitoring a system. To disable the data cache, issue a dcctl
with a disable data cache message. The enable and disable status of the data cache and various
attributes of the cache can be determined by an dcctl issued with a data-cache status message.

4.5.2 Multi-Word Data Access that Partially Hit the Data Cache

The following applies only when data caching is enabled for an access.

For a multi-word load access (ldl, ldt, ldq) in which none of the requested words hit the data
cache, an external bus transaction is started to acquire all the words of the access. 

For a multi-word load access that partially hits the data-cache, the processor may either:

• Load or reload all words of the access (even those that hit) from the external bus.

• Load only missing words from the external bus and interleave them with words found in the
data cache.
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The multi-word alignment determines which of the above methods is used:

• Naturally aligned multi-word causes all words to be reloaded.

• An unaligned multi-word access causes only missing words to be loaded. 

Regardless of which method is used, only locations within the data-cache that missed are updated
by the results of the external memory request. Locations that hit are not updated by the external
memory request. (This ensures coherency between word stores and multi-word loads.) In each
case, the external bus accesses used to acquire the data may consist of none, one, or several burst
accesses based on the alignment of the data and the bus-width of the memory region that contains
the data. (See Chapter 15, EXTERNAL BUS for more details.)

A multi-word load access that completely hits in the data cache does not cause external bus
accesses.

For a multi-word store access (stl, stt, stq) an external bus transaction is started to write all words
of the access regardless if any or all words of the access hit the data cache. External bus accesses
used to write the data may consist of none, one, or several burst accesses based on data alignment
and the bus-width of the memory region that receives the data. (See Chapter 15, EXTERNAL BUS
for more details.) The cache is also updated accordingly as described earlier in this chapter. 

4.5.3 Data Cache Fill Policy

The i960 Jx processor always uses a “natural” fill policy for cacheable loads. The processor fetches
only the amount of data that is requested by a load (i.e. a word, long word, etc.) on a data cache
miss. Exceptions are byte and short-word accesses, which are always promoted to words. This
allows a complete word to be brought into the cache and marked valid. When the data cache is
disabled and loads are done from a cacheable region, promotions from bytes and short words still
take place.

4.5.4 Data Cache Write Policy

The write policy determines what happens on cacheable writes (stores). The i960 Jx processor
always uses a write-through policy. The result of a store is always propagated to external memory
regardless of whether the store is a hit or miss. Stores are always seen on the external bus; this
maintains coherency between the data cache and external memory.

Errata, 3-22-95 BWL
Sentence added to end of
section 4.5.3. “When the
data cache is disabled
and loads are done from
a cacheable region,
promotions from bytes
and short words still take
place.”
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The i960 Jx processor always uses a write-allocate policy for data. For a cacheable location, data
is always written to the data cache regardless of whether the access is a hit or miss. The following
cases are relevant to consider:

1. In the case of a hit for a word or multi-word store, the appropriate line and word(s) are
updated with the data.

2. In the case of a miss for a word or multi-word store, a tag and cache line are allocated, if
needed, and the appropriate valid bits, line, and word(s) are updated.

3. In the case of a byte or short-word datum that hits a valid word in the cache, both the word
in cache and external memory are updated with the datum; the cache word remains valid.

4. In the case of a byte or short-word datum that falls within a valid line, but, misses because
the appropriate word is invalid, both the word and external memory are updated with the
datum; however, the cache word remains invalid.

5. In the case of a byte or short-word datum that does not fall within a valid line: a tag and
cache line are allocated; the appropriate cache word and external memory are updated with
the datum; and the cache line and all cache words are made invalid.

For cacheable stores that are equal to or greater than a word in length, cache tags and appropriate
valid bits are updated whenever data is written into the cache. Consider a word store as an
example. The tag is always updated and its valid bit is set. The appropriate valid bit for that word
is always set and the other three valid bits are always cleared.

Cacheable stores that are less than a word in length are handled differently. Byte and short-word
stores that hit the cache (i.e., are contained in valid words within valid cache lines) do not change
the tag and valid bits. The processor writes the data into the cache and external memory as usual.
A byte or short-word store to an invalid word within a valid cache line leaves the word valid bit
cleared because the rest of the word is still invalid. In all cases the processor simultaneously writes
the data into the cache and the external memory.

4.5.5 Data Cache Coherency and Non-cacheable Accesses

The i960 Jx processor ensures that the data cache is always kept coherent with accesses that it
initiates and performs. The most visible application of this requirement concerns non-cacheable
accesses discussed below. However, the processor does not provide data-cache coherency for
accesses on the external bus that it did not initiate. Software is responsible for maintaining
coherency in a multi-processor environment. 
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An access is defined as non-cacheable if any of the following are true: 

1. The access falls into an address range mapped by an enabled LMCON pair or DLMCON
and the data-caching enabled bit in the matching LMCON is clear. 

2. The entire data cache is disabled. 

3. The access is a read operation of the read-modify-write sequence performed by an atmod or
atadd instruction.

4. The access is an implicit read access to the interrupt table to post or deliver a software
interrupt.

If the address for a non-cacheable store matches a tag (“tag hit”), the corresponding cache line will
still remain valid, but the appropriate word valid bit will be marked invalid. This is because the
word is not actually updated with the value of the store. This ensures that the data cache never
contains stale data in a single-processor system. A simple case illustrates the necessity of this
behavior: a read of a datum previously stored by a non-cacheable access must return the new value
of the datum, not the value in the cache. Because the processor invalidates the appropriate word in
the cache line on a store hit when the cache is disabled, coherency can be maintained when the data
cache is enabled and disabled dynamically. 

4.5.6 External I/O and Bus Masters and Cache Coherency

The i960 Jx processor implements a single processor coherency mechanism. There is no hardware
mechanism — such as bus snooping — to support multiprocessing. If another bus master can
change shared memory, there is no guarantee that the data cache contains the most recent data. The
user must manage such data coherency issues in software.

A suggested practice is to program the LMCON0-1 registers such that I/O regions are non-
cacheable. Partitioning the system in this fashion eliminates I/O as a source of coherency
problems.

4.5.7 Data Cache Visibility

Data cache status can be determined by an dcctl issued with a data-cache status message.

Data cache contents, data, tags and valid bits can be written to memory as an aid for debugging.
This is accomplished by a dcctl that is issued with the dump cache operand.
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CHAPTER 5
INSTRUCTION SET OVERVIEW

This chapter provides an overview of the i960® microprocessor family’s instruction set and i960 Jx
processor-specific instruction set extensions. Also discussed are the assembly-language and
instruction-encoding formats, various instruction groups and each group’s instructions.

CHAPTER 6, INSTRUCTION SET REFERENCE describes each instruction — including
assembly language syntax — and the action taken when the instruction executes and examples of
how to use the instruction.

5.1 INSTRUCTION FORMATS

80960Jx instructions may be described in two formats: assembly language and instruction
encoding. The following subsections briefly describe these formats.

5.1.1 Assembly Language Format

Throughout this manual, instructions are referred to by their assembly language mnemonics. For
example, the add ordinal instruction is referred to as addo. Examples use Intel 80960 assembler
assembly language syntax which consists of the instruction mnemonic followed by zero to three
operands, separated by commas. In the following assembly language statement example for addo,
ordinal operands in global registers g5 and g9 are added together; the result is stored in g7:

addo g5, g9, g7 # g7 = g9 + g5

In the assembly language listings in this chapter, registers are denoted as:

All numbers used as literals or in address expressions are assumed to be decimal. Hexadecimal
numbers are denoted with a “0x” prefix (e.g., 0xffff0012). Several assembly language instruction
statement examples follow. Additional assembly language examples are given in section 2.3.5,
“Addressing Mode Examples” (pg. 2-8). Further information about syntax can be found in an
assembly language manual for the Intel i960® Processor.

g global register r local register

# pound sign precedes a comment

subi r3, r5, r6 #r6 ← r5 - r3
setbit 13, g4, g5 #g5 ← g4 with bit 13 set
lda 0xfab3, r12 #r12← 0xfab3
ld (r4), g3 #g3 ← memory location that r4 points to
st g10, (r6)[r7*2] #g10← memory location that r6+2*r7 points to
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5.1.2 Instruction Encoding Formats

All instructions are encoded in one 32-bit machine language instruction — also known as an
opword — which must be word aligned in memory. An opword’s most significant eight bits
contain the opcode field. The opcode field determines the instruction to be performed and how the
remainder of the machine language instruction is interpreted. Instructions are encoded in opwords
in one of four formats (see Figure 5-1).

Figure 5-1.  Machine-Level Instruction Formats

Instruction Type Format Description
register REG Most instructions are encoded in this format. Used primarily

for instructions which perform register-to-register operations. 

compare and branch COBR An encoding optimization which combines compare and
branch operations into one opword. Other compare and
branch operations are also provided as REG and CTRL
format instructions.

control CTRL Used for branches and calls that do not depend on registers for
address calculation. 

memory MEM Used for referencing an operand which is a memory address.
Load and store instructions — and some branch and call
instructions — use this format. MEM format has two
encodings: MEMA or MEMB. Usage depends upon the
addressing mode selected. MEMB-formatted addressing
modes use the word in memory immediately following the
instruction opword as a 32-bit constant.
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5.1.3 Instruction Operands

This section identifies and describes operands that can be used with the instruction formats.

5.2 INSTRUCTION GROUPS

The i960 processor instruction set can be categorized into the following functional groups:

Notice that the i960 Jx processor does not support the floating point instruction group of the
80960KB and 80960SB microprocessors. Table 5-1 shows the instructions in each group. The
actual number of instructions is greater than those shown in this list because — for some
operations — several unique instructions are provided to handle various operand sizes, data types
or branch conditions. The following sections briefly overview the instructions in each group.

5.2.1 Data Movement

These instructions are used to move data from memory to global and local registers, from global
and local registers to memory, and between local and global registers.

Format Operand(s) Description
REG src1, src2, src/dst src1 and src2 can be global registers, local registers or

literals. src/dst is either a global or a local register.

CTRL displacement CTRL format is used for branch and call instructions.
displacement value indicates the target instruction of the
branch or call.

COBR src1, src2, displacement src1, src2 indicate values to be compared; displacement
indicates branch target. src1 can specify a global register,
local register or a literal. src2 can specify a global or local
register.

MEM src/dst, efa Specifies source or destination register and an effective
address (efa) formed by using the processor’s addressing
modes as described in section 2.3, “MEMORY
ADDRESSING MODES” (pg. 2-6). Registers specified in a
MEM format instruction must be either a global or local
register.

• Data Movement • Arithmetic (Ordinal and Integer) • Logical

• Bit, Bit Field and Byte • Comparison • Branch

• Call/Return • Fault • Debug

• Atomic • Processor Management
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Rules for register alignment must be followed when using load, store and move instructions that
move 8, 12 or 16 bytes at a time. See section 3.5, “MEMORY ADDRESS SPACE” (pg. 3-13) for
alignment requirements for code portability across implementations.

Table 5-1.  80960JA/JF Instruction Set

Data Movement Arithmetic Logical Bit, Bit Field and Byte

Load

Store

Move

*Conditional Select

Load Address

Add

Subtract

Multiply

Divide

Remainder

Modulo

Shift

Extended Shift

Extended Multiply

Extended Divide

Add with Carry

Subtract with Carry

*Conditional Add

*Conditional Subtract

Rotate

And

Not And

And Not

Or

Exclusive Or

Not Or

Or Not

Nor

Exclusive Nor

Not

Nand

Set Bit

Clear Bit

Not Bit

Alter Bit

Scan For Bit

Span Over Bit

Extract

Modify

Scan Byte for Equal

*Byte Swap

Comparison Branch Call/Return Fault

Compare

Conditional Compare

Compare and 
Increment

Compare and 
Decrement

Test Condition Code

Check Bit

Unconditional Branch

Conditional Branch

Compare and Branch

Call

Call Extended

Call System

Return

Branch and Link

Conditional Fault

Synchronize Faults

Debug Processor 
Management Atomic

Modify Trace Controls

Mark

Force Mark

Flush Local Registers

Modify Arithmetic 
Controls

Modify Process 
Controls

*Halt

System Control

*Cache Control

*Interrupt Control

Atomic Add

Atomic Modify

* Denotes new instructions unavailable on 80960CA/CF, 80960KA/KB and 80960SA/SB implementations.
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5.2.1.1 Load and Store Instructions

Load instructions listed below copy bytes or words from memory to local or global registers or to a
group of registers. Each load instruction requires a corresponding store instruction to copy to
memory bytes or words from a selected local or global register or group of registers. All load and
store instructions use the MEM format.

ld copies 4 bytes from memory into successive registers; ldl copies 8 bytes; ldt copies 12 bytes;
ldq copies 16 bytes.

st copies 4 bytes from successive registers into memory; stl copies 8 bytes; stt copies 12 bytes;
stq copies 16 bytes.

For ld, ldob, ldos, ldib and ldis, the instruction specifies a memory address and register; the
memory address value is copied into the register. The processor automatically extends byte and
short (half-word) operands to 32 bits according to data type. Ordinals are zero-extended; integers
are sign-extended.

For st, stob, stos, stib and stis, the instruction specifies a memory address and register; the
register value is copied into memory. For byte and short instructions, the processor automatically
reformats the source register’s 32-bit value for the shorter memory location. For stib and stis, this
reformatting can cause integer overflow if the register value is too large for the shorter memory
location. When integer overflow occurs, either an integer-overflow fault is generated or the
integer-overflow flag in the AC register is set, depending on the integer-overflow mask bit setting
in the AC register. 

For stob and stos, the processor truncates the operand and does not create a fault if truncation
resulted in the loss of significant bits.

ld load word st store word
ldob load ordinal byte stob store ordinal byte
ldos load ordinal short stos store ordinal short
ldib load integer byte stib store integer byte
ldis load integer short stis store integer short
ldl load long stl store long
ldt load triple stt store triple
ldq load quad stq store quad
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5.2.1.2 Move

Move instructions copy data from a local or global register or group of registers to another register
or group of registers. These instructions use the REG format.

5.2.1.3 Load Address

The Load Address instruction (lda) computes an effective address in the address space from an
operand presented in one of the addressing modes. lda is commonly used to load a constant into a
register. This instruction uses the MEM format and can operate upon local or global registers.

On the i960 Jx processors, lda is useful for performing simple arithmetic operations. The
processor’s parallelism allows lda to execute in the same clock as another arithmetic or logical
operation.

5.2.2 Select Conditional

Given the proper condition code bits setting, these instructions move one of two pieces of data
from its source to the specified destination.

5.2.3 Arithmetic

Table 5-2 lists arithmetic operations and data types for which the i960 Jx processors provide
instructions. “X” in this table indicates that the microprocessor provides an instruction for the
specified operation and data type. All arithmetic operations are carried out on operands in
registers. Refer to section 5.2.12, “Atomic Instructions” (pg. 5-17) for instructions which handle
specific requirements for in-place memory operations.

mov move word
movl move long word
movt move triple word
movq move quad word

selno Select Based on Unordered
selg Select Based on Greater
sele Select Based on Equal
selge Select Based on Greater or Equal
sell Select Based on Less
selne Select Based on Not Equal
selle Select Based on Less or Equal
selo Select Based on Ordered
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All arithmetic instructions use the REG format and can operate on local or global registers. The
following subsections describe arithmetic instructions for ordinal and integer data types.

5.2.3.1 Add, Subtract, Multiply and Divide

These instructions perform add, subtract, multiply or divide operations on integers and ordinals:

Table 5-2.  Arithmetic Operations

Arithmetic Operations
Data Types

Integer Ordinal

Add X X

Add with Carry X X

Conditional Add X X

Subtract X X

Subtract with Carry X X

Conditional Subtract X X

Multiply X X

Extended Multiply X

Divide X X

Extended Divide X

Remainder X X

Modulo X

Shift Left X X

Shift Right X X

Extended Shift Right X

Shift Right Dividing Integer X

addi Add Integer
addo Add Ordinal
ADD<cc> Conditional Add
subi Subtract Integer
subo Subtract Ordinal
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addi, ADDI<cc>, subi, SUBI<cc>, muli and divi generate an integer-overflow fault if the result is
too large to fit in the 32-bit destination. divi and divo generate a zero-divide fault if the divisor is
zero.

5.2.3.2 Extended Arithmetic

These instructions support extended-precision arithmetic; i.e., arithmetic operations on operands
greater than one word in length:

addc adds two word operands (literals or contained in registers) plus the AC Register condition
code bit 1 (used here as a carry bit). If the result has a carry, bit 1 of the condition code is set;
otherwise, it is cleared. This instruction’s description in CHAPTER 6, INSTRUCTION SET
REFERENCE gives an example of how this instruction can be used to add two long-word (64-bit)
operands together.

subc is similar to addc, except it is used to subtract extended-precision values. Although addc
and subc treat their operands as ordinals, the instructions also set bit 0 of the condition codes if the
operation would have resulted in an integer overflow condition. This facilitates a software imple-
mentation of extended integer arithmetic.

emul multiplies two ordinals (each contained in a register), producing a long ordinal result (stored
in two registers). ediv divides a long ordinal by an ordinal, producing an ordinal quotient and an
ordinal remainder (stored in two adjacent registers).

5.2.3.3 Remainder and Modulo

These instructions divide one operand by another and retain the remainder of the operation:

SUB<cc> Conditional Subtract
muli Multiply Integer
mulo Multiply Ordinal
divi Divide Integer
divo Divide Ordinal

addc add ordinal with carry
subc subtract ordinal with carry
emul extended multiply
ediv extended divide

remi remainder integer
remo remainder ordinal
modi modulo integer
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The difference between the remainder and modulo instructions lies in the sign of the result. For
remi and remo, the result has the same sign as the dividend; for modi, the result has the same sign
as the divisor.

5.2.3.4 Shift and Rotate

These shift instructions shift an operand a specified number of bits left or right:

Except for rotate, these instructions discard bits shifted beyond the register boundary.

shlo shifts zeros in from the least significant bit; shro shifts zeros in from the most significant bit.
These instructions are equivalent to mulo and divo by the power of 2, respectively.

shli shifts zeros in from the least significant bit. If a shift of the specified places would result in an
overflow, an integer-overflow fault is generated (if enabled). The destination register is written
with the source shifted as much as possible without overflow and an integer-overflow fault is
signaled.

shri performs a conventional arithmetic shift right operation by shifting the sign bit in from the
most significant bit. However, when this instruction is used to divide a negative integer operand by
the power of 2, it may produce an incorrect quotient. (Discarding the bits shifted out has the effect
of rounding the result toward negative.)

shrdi is provided for dividing integers by the power of 2. With this instruction, 1 is added to the
result if the bits shifted out are non-zero and the operand is negative, which produces the correct
result for negative operands. shli and shrdi are equivalent to muli and divi by the power of 2,
respectively.

rotate rotates operand bits to the left (toward higher significance) by a specified number of bits.
Bits shifted beyond register’s left boundary (bit 31) appear at the right boundary (bit 0).

shlo shift left ordinal
shro shift right ordinal
shli shift left integer
shri shift right integer
shrdi shift right dividing integer
rotate rotate left
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5.2.4 Logical

These instructions perform bitwise Boolean operations on the specified operands:

These all use the REG format and can specify literals or local or global registers.

The processor provides logical operations in addition to and, or and xor as a performance optimi-
zation. This optimization reduces the number of instructions required to perform a logical
operation and reduces the number of registers and instructions associated with bitwise mask
storage and creation.

5.2.5 Bit and Bit Field

These instructions perform operations on a specified bit or bit field in an ordinal operand. All use
the REG format and can specify literals or local or global registers.

5.2.5.1 Bit Operations

These instructions operate on a specified bit:

setbit, clrbit and notbit set, clear or complement (toggle) a specified bit in an ordinal.

and src2 AND src1
notand (NOT src2) AND src1
andnot src2 AND (NOT src1)
xor src2 XOR src1
or src2 OR src1
nor NOT (src2 OR src1)
xnor src2 XNOR src1
not NOT src1
notor (NOT src2) or src1
ornot src2 or (NOT src1)
nand NOT (src2 AND src1)

setbit set bit
clrbit clear bit
notbit not bit
alterbit alter bit
scanbit scan for bit
spanbit span over bit
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alterbit alters the state of a specified bit in an ordinal according to the condition code. If the
condition code is 010, the bit is set; if the condition code is 000, the bit is cleared.

chkbit, described in section 5.2.7, “Comparison” (pg. 5-11), can be used to check the value of an
individual bit in an ordinal.

scanbit and spanbit find the most significant set bit or clear bit, respectively, in an ordinal.

5.2.5.2 Bit Field Operations

The two bit field instructions are extract and modify.

extract converts a specified bit field, taken from an ordinal value, into an ordinal value. In essence,
this instruction shifts right a bit field in a register and fills in the bits to the left of the bit field with
zeros. (eshro also provides the equivalent of a 64-bit extract of 32 bits).

modify copies bits from one register, under control of a mask, into another register. Only
unmasked bits in the destination register are modified. modify is equivalent to a bit field move.

5.2.6 Byte Operations

scanbyte performs a byte-by-byte comparison of two ordinals to determine if any two corre-
sponding bytes are equal. The condition code is set based on the results of the comparison.
scanbyte uses the REG format and can specify literals or local or global registers. 

bswap alters the order of bytes in a word, reversing its “endianess.”

5.2.7 Comparison

The processor provides several types of instructions for comparing two operands, as described in
the following subsections.

5.2.7.1 Compare and Conditional Compare

These instructions compare two operands then set the condition code bits in the AC register
according to the results of the comparison:

cmpi Compare Integer
cmpib Compare Integer Byte
cmpis Compare Integer Short
cmpo Compare Ordinal
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These all use the REG format and can specify literals or local or global registers. The condition
code bits are set to indicate whether one operand is less than, equal to or greater than the other
operand. See section 3.6.2, “Arithmetic Controls (AC) Register” (pg. 3-17) for a description of the
condition codes for conditional operations.

cmpi and cmpo simply compare the two operands and set the condition code bits accordingly.
concmpi and concmpo first check the status of condition code bit 2:

• If not set, the operands are compared as with cmpi and cmpo. 

• If set, no comparison is performed and the condition code flags are not changed.

The conditional-compare instructions are provided specifically to optimize two-sided range
comparisons to check if A is between B and C (i.e., B ≤ A ≤ C). Here, a compare instruction (cmpi
or cmpo) checks one side of the range (e.g., A ≥ B) and a conditional compare instruction
(concmpi or concmpo) checks the other side (e.g., A ≤ C) according to the result of the first
comparison. The condition codes following the conditional comparison directly reflect the results
of both comparison operations. Therefore, only one conditional branch instruction is required to
act upon the range check; otherwise, two branches would be needed.

chkbit checks a specified bit in a register and sets the condition code flags according to the bit
state. The condition code is set to 0102 if the bit is set and 0002 otherwise.

5.2.7.2 Compare and Increment or Decrement

These instructions compare two operands, set the condition code bits according to the results, then
increment or decrement one of the operands:

These all use the REG format and can specify literals or local or global registers. They are an
architectural performance optimization which allows two register operations (e.g., compare and
add) to execute in a single cycle. These are intended for use at the end of iterative loops.

cmpob Compare Ordinal Byte
cmpos Compare Ordinal Short
concmpi Conditional Compare Integer
concmpo Conditional Compare Ordinal
chkbit Check Bit

cmpinci compare and increment integer
cmpinco compare and increment ordinal
cmpdeci compare and decrement integer
cmpdeco compare and decrement ordinal
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5.2.7.3 Test Condition Codes

These test instructions allow the state of the condition code flags to be tested:

If the condition code matches the instruction-specified condition, these cause a TRUE (01H) to be
stored in a destination register; otherwise, a FALSE (00H) is stored. All use the COBR format and
can operate on local and global registers.

5.2.8 Branch

Branch instructions allow program flow direction to be changed by explicitly modifying the IP.
The processor provides three branch instruction types:

• unconditional branch

• conditional branch

• compare and branch

Most branch instructions specify the target IP by specifying a signed displacement to be added to
the current IP. Other branch instructions specify the target IP’s memory address, using one of the
processor’s addressing modes. This latter group of instructions is called extended addressing
instructions (e.g., branch extended, branch-and-link extended).

5.2.8.1 Unconditional Branch

These instructions are used for unconditional branching: 

teste test for equal
testne test for not equal
testl test for less
testle test for less or equal
testg test for greater
testge test for greater or equal
testo test for ordered
testno test for unordered

b Branch
bx Branch Extended
bal Branch and Link
balx Branch and Link Extended
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b and bal use the CTRL format. bx and balx use the MEM format and can specify local or global
registers as operands. b and bx cause program execution to jump to the specified target IP. These
two instructions perform the same function; however, their determination of the target IP differs.
The target IP of a b instruction is specified at link time as a relative displacement from the current
IP. The target IP of the bx instruction is the absolute address resulting from the instruction’s use of
a memory addressing mode during execution.

bal and balx store the next instruction’s address in a specified register, then jump to the specified
target IP. (For bal, the RIP is automatically stored in register g14; for balx, the RIP location is
specified with an instruction operand.) As described in section 7.9, “BRANCH-AND-LINK” (pg.
7-22), branch and link instructions provide a method of performing procedure calls that do not use
the processor’s integrated call/return mechanism. Here, the saved instruction address is used as a
return IP. Branch and link is generally used to call leaf procedures (that is, procedures that do not
call other procedures).

bx and balx can make use of any memory addressing mode.

5.2.8.2 Conditional Branch

With conditional branch (BRANCH IF) instructions, the processor checks the AC register
condition code flags. If these flags match the value specified with the instruction, the processor
jumps to the target IP. These instructions use the displacement-plus-IP method of specifying the
target IP:

All use the CTRL format. bo and bno are used with real numbers. Refer to section 3.6.2.2,
“Condition Code” (pg. 3-18) for a discussion of the condition code for conditional operations.

be branch if equal/true
bne branch if not equal
bl branch if less
ble branch if less or equal
bg branch if greater
bge branch if greater or equal
bo branch if ordered
bno branch if unordered/false
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5.2.8.3 Compare and Branch

These instructions compare two operands then branch according to the comparison result. Three
instruction subtypes are compare integer, compare ordinal and branch on bit:

All use the COBR machine instruction format and can specify literals, local registers or global
registers as operands. With compare ordinal and branch and compare integer and branch instruc-
tions, two operands are compared and the condition code bits are set as described in section 5.2.7,
“Comparison” (pg. 5-11). A conditional branch is then executed as with the conditional branch
(BRANCH IF) instructions.

With check bit and branch instructions, one operand specifies a bit to be checked in the other
operand. The condition code flags are set according to the state of the specified bit: 0102 (true) if
the bit is set and 0002 (false) if the bit is clear. A conditional branch is then executed according to
condition code bit settings.

These instructions optimize execution performance time. When it is not possible to separate
adjacent compare and branch instructions with other unrelated instructions, replacing two instruc-
tions with a single compare and branch instruction increases performance.

cmpibe compare integer and branch if equal
cmpibne compare integer and branch if not equal

cmpibl compare integer and branch if less

cmpible compare integer and branch if less or equal 
cmpibg compare integer and branch if greater

cmpibge compare integer and branch if greater or equal

cmpibo compare integer and branch if ordered
cmpibno compare integer and branch if unordered 

cmpobe compare ordinal and branch if equal
cmpobne compare ordinal and branch if not equal 
cmpobl compare ordinal and branch if less

cmpoble compare ordinal and branch if less or equal
cmpobg compare ordinal and branch if greater
cmpobge compare ordinal and branch if greater or equal 

bbs check bit and branch if set
bbc check bit and branch if clear
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5.2.9 Call and Return

The processor offers an on-chip call/return mechanism for making procedure calls. Refer to
section 7.1, “CALL AND RETURN MECHANISM” (pg. 7-2). These instructions support this
mechanism:

call and ret use the CTRL machine-instruction format. callx uses the MEM format and can specify
local or global registers. calls uses the REG format and can specify local or global registers.

call and callx make local calls to procedures. A local call is a call that does not require a switch to
another stack. call and callx differ only in the method of specifying the target procedure’s address.
The target procedure of a call is determined at link time and is encoded in the opword as a signed
displacement relative to the call IP. callx specifies the target procedure as an absolute 32-bit
address calculated at run time using any one of the addressing modes. For both instructions, a new
set of local registers and a new stack frame are allocated for the called procedure.

calls is used to make calls to system procedures — procedures that provide a kernel or system-
executive services. This instruction operates similarly to call and callx, except that it gets its
target-procedure address from the system procedure table. An index number included as an
operand in the instruction provides an entry point into the procedure table.

Depending on the type of entry being pointed to in the system procedure table, calls can cause
either a system-supervisor call or a system-local call to be executed. A system-supervisor call is a
call to a system procedure that also switches the processor to supervisor mode and the supervisor
stack. A system-local call is a call to a system procedure that does not cause an execution mode or
stack change. Supervisor mode is described throughout CHAPTER 7, PROCEDURE CALLS.

ret performs a return from a called procedure to the calling procedure (the procedure that made the
call). ret obtains its target IP (return IP) from linkage information that was saved for the calling
procedure. ret is used to return from all calls — including local and supervisor calls — and from
implicit calls to interrupt and fault handlers.

call call
callx call extended
calls call system
ret return
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5.2.10 Conditional Faults

Generally, the processor generates faults automatically as the result of certain operations. Fault
handling procedures are then invoked to handle various fault types without explicit intervention by
the currently running program. These conditional fault instructions permit a program to explicitly
generate a fault according to the state of the condition code flags. All use the CTRL format. 

5.2.11 Debug

The processor supports debugging and monitoring of program activity through the use of trace
events. These instructions support these debugging and monitoring tools:

These all use the REG format. Trace functions are controlled with bits in the Trace Control (TC)
register which enable or disable various types of tracing. Other TC register flags indicate when an
enabled trace event is detected. Refer to CHAPTER 10, TRACING AND DEBUGGING.

modpc can enable/disable trace fault generation; modtc permits trace controls to be modified.
mark causes a breakpoint trace event to be generated if breakpoint trace mode is enabled. fmark
generates a breakpoint trace independent of the state of the breakpoint trace mode bits.

The sysctl instruction also provides control over breakpoint trace event generation. This
instruction is used, in part, to load and control the i960 Jx microprocessors’ breakpoint registers.

5.2.12 Atomic Instructions

Atomic instructions perform read-modify-write operations on operands in memory. They allow a
system to ensure that, when an atomic operation is performed on a specified memory location, the
operation completes before another agent is allowed to perform an operation on the same memory.
These instructions are required to enable synchronization between interrupt handlers and

faulte fault if equal
faultne fault if not equal
faultl fault if less
faultle fault if less or equal
faultg fault if greater
faultge fault if greater or equal
faulto fault if ordered
faultno fault if unordered

modpc modify process controls
modtc modify trace controls
mark mark
fmark force mark
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background tasks in any system. They are also particularly useful in systems where several agents
— processors, coprocessors or external logic — have access to the same system memory for
communication.

The atomic instructions are atomic add (atadd) and atomic modify (atmod). atadd causes an
operand to be added to the value in the specified memory location. atmod causes bits in the
specified memory location to be modified under control of a mask. Both instructions use the REG
format and can specify literals or local or global registers.

5.2.13 Processor Management

These instructions control processor-related functions:

All use the REG format and can specify literals or local or global registers. 

modpc provides a method of reading and modifying PC register contents. Only programs
operating in supervisor mode may modify the PC register; however, any program may read it.

The processor provides a flush local registers instruction (flushreg) to save the contents of the
cached local registers to the stack. The flush local registers instruction automatically stores the
contents of all the local register sets — except the current set — in the register save area of their
associated stack frames.

The modify arithmetic controls instruction (modac) allows the AC register contents to be copied
to a register and/or modified under the control of a mask. The AC register cannot be explicitly
addressed with any other instruction; however, it is implicitly accessed by instructions that use the
condition codes or set the integer overflow flag.

sysctl is used to configure the interrupt controller, breakpoint registers and instruction cache. It
also permits software to signal an interrupt or cause a processor reset and reinitialization. sysctl
may only be executed by programs operating in supervisor mode.

modpc Modify the process controls register
flushreg Flush cached local register sets to memory
modac Modify the AC register
sysctl Perform system control function
icctl Instruction cache control
dcctl Data cache control
halt Halt processor
inten Global interrupt enable
intdis Global interrupt disable
intctl Global interrupt enable and disable
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icctl and dcctl provide cache control functions including: enabling, disabling, loading and locking,
(instruction cache only) invalidating, getting status and storing cache information out to memory.
halt puts the processor in low-power halt mode. intctl, inten and intdis are used to enable and
disable interrupts and to determine current interrupt enable status.

5.3 PERFORMANCE OPTIMIZATION 

Performance optimization are categorized into two sections: instructions optimizations and miscel-
laneous optimizations. 

5.3.1 Instruction Optimizations

The instruction optimizations are broken down by the instruction classification.

5.3.1.1 Load / Store Execution Model

Because the i960 Jx processor has a 32-bit external data bus, multiple word accesses require
multiple cycles. The Jx uses microcode to sequence the multi-word accesses. Because the
microcode can ensure that aligned multi-words are bursted together on the external bus, software
should not substitute multiple single-word instructions for one multi-word instruction for data that
is not likely to be in cache. For example a ldq provides better bus performance than four ld instruc-
tions.

Once a load is issued, the processor attempts to execute other instructions while the load is
outstanding. It is important to note that if the load misses the data cache, the processor does not
stall the issuing of subsequent instructions (other than stores) that do not depend on the load.

Software should avoid following a load with an instruction that depends on the result of the load.
For a load that hits the data cache, there will be a one-cycle stall if the instruction immediately after
the load requires the data. If the load fails to hit the data cache, the instruction depending on the
load will be stalled until the outstanding load request is resolved.

Multiple, back-to-back load instructions do not stall the processor until the bus queue becomes
full.

The processor delays issuing a store instruction until all previously-issued load instructions
complete. This happens regardless of whether the store is dependent on the load. This ordering
between loads and stores ensures that the return data from a previous cache-read miss does not
overwrite the cache line updated by a subsequent store.
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5.3.1.2 Compare Operations

Byte and short word data is more efficiently compared using the new byte and short compare
instructions (cmpob, cmpib, cmpos, cmpis), rather than shifting the data and using a word
compare instruction.

5.3.1.3 Microcoded Instructions

While the majority of instructions on the i960 Jx processor are single cycle and are executed
directly by processor hardware, some require microcode emulation. Entry into a microcode
routine requires two cycles. Exit from microcode typically requires two cycles. For some routines,
one cycle of the exit process can execute in parallel with another instruction, thus saving one cycle
of execution time.

5.3.1.4 Multiply-Divide Unit Instructions

The Multiply-Divide Unit (MDU) of the Jx performs a number of multi-cycle arithmetic
operations. These can range from 2 cycles for a 16-bitx32-bit mulo, 4 cycles for a 32-bitx32-bit
mulo, to 30+ cycles for an ediv.

Once issued, these MDU instructions are executed in parallel with other non-MDU instructions
that do not depend on the result of the MDU operation. Attempting to issue another MDU
instruction while a current MDU instruction is executing, stalls the processor until the first one
completes.

5.3.1.5 Multi-Cycle Register Operations

A few register operations can also take multiple cycles. The following instructions are all
performed in microcode:

On the Jx, test<cc> dst is microcoded and takes many more cycles than SEL<cc> 0,1,dst, which is
executed in one cycle directly by processor hardware.

Multi-register move operation execution time can be decreased at the expense of cache utilization
and code density by using mov the appropriate number of times instead of movl, movt and movq
instructions.

• bswap • extract • eshro • modify • movl • movt

• movq • shrdi • scanbit • spanbit • testno • testo

• testl • testle • teste • testne • testg • testge
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5.3.1.6 Simple Control Transfer

There is no branch lookahead or branch prediction mechanism on the i960 Jx microprocessor.
Simple branch instructions take one cycle to execute, and one more cycle is needed to fetch the
target instruction if the branch is actually taken.

 b, bal, bno, bo, bl, ble, be, bne, bg, bge

One mode of the bx (branch-extended) instruction, bx (base), is also a simple branch and takes one
cycle to execute and one cycle to fetch the target. 

As a result, a bal(g14) or bx (g14) sequence provides a two-cycle call and return mechanism for
efficient leaf procedure implementation.

Compare-and-branch instructions have been optimized on the i960 Jx microprocessor. They
require 2 cycles to execute, and one more cycle to fetch the target instruction if the branch is
actually taken. The instructions are:

5.3.1.7 Memory Instructions

The 80960Jx provides efficient support for naturally aligned byte, short, and word accesses that
use one of 6 optimized addressing modes. These accesses require only 1 to 2 cycles to execute;
additional cycles are needed for a load to return its data. 

 The byte, short and word memory instructions are:

 ldob, ldib, ldos, ldis, ld, lda stob, stib, stos, stis, st

The remainder of accesses require multiple cycles to execute. These include:

• Unaligned short, and word accesses 

• Byte, short, and word accesses that do not use one of the 6 optimized addressing modes

• Multi-word accesses 

The multi-word accesses are:

 ldl, ldt, ldq, stl, stt, stq

• cmpobno •  cmpobo •  cmpobl •  cmpoble •  cmpobe •  cmpobne

•  cmpobg •  cmpobge • cmpibno •  cmpibo •  cmpibl •  cmpible

•  cmpibe • cmpibg • cmpibne • cmpibge • bbc •  bbs



INSTRUCTION SET OVERVIEW

5-22

5.3.1.8 Unaligned Memory Accesses

Unaligned memory accesses are performed by microcode. Microcode sequences the access into
smaller aligned pieces and does any merging of data that is needed. As a result, these accesses are
not as efficient as aligned accesses. In addition, no bursting on the external bus is performed for
these accesses. Whenever possible, unaligned accesses should be avoided.

5.3.2 Miscellaneous Optimizations

5.3.2.1 Masking of Integer Overflow

The i960 core architecture inserts an implicit syncf before performing a call operation or
delivering an interrupt so that a fault handler can be dispatched first, if necessary. The syncf can
require a number of cycles to complete if a multi-cycle integer-multiply (muli) or integer-divide
(divi) instruction was issued previously and integer-overflow faults are unmasked (allowed to
occur). Call performance and interrupt latency can be improved by masking integer-overflow
faults (AC.om = 1), which allows the implicit syncf to complete more quickly.

5.3.2.2 Avoid Using PFP, SP, R3 As Destinations for MDU Instructions

When performing a call operation or delivering an interrupt, the processor typically attempts to
push the first four local registers (pfp, sp, rip, and r3) onto the local register cache as early as
possible. Because of register-interlock, this operation will be stalled until previous instructions
return their results to these registers. In most cases, this is not a problem; however, in the case of
multi-cycle instructions (divo, divi, ediv, modi, remo, and remi), the processor could be stalled
for many cycles waiting for the result and unable to proceed to the next step of call processing or
interrupt delivery.

Call performance and interrupt latency can be improved by avoiding the first four registers as the
destination for a MDU instruction. Generally, registers pfp, sp, and rip should be avoided they are
used for procedure linking.

5.3.2.3 Use Global Registers (g0 - g14) As Destinations for MDU Instructions

Using the same rationale as in the previous item, call processing and interrupt performance are
improved even further by using global registers (g0-g14) as the destination for multi-cycle MDU
instructions. This is because there is no dependency between g0-g14 and implicit or explicit call
operations (i.e., global registers are not pushed onto the local register cache).
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5.3.2.4 Execute in Imprecise Fault Mode

Significant performance improvement is possible by allowing imprecise faults (AC.nif = 0). In
precise fault mode (AC.nif = 1), the processor will not issue a new instruction until the previous
one has completed. This ensures that a fault from the previous instruction is delivered before the
next instruction can begin execution. Imprecise fault mode allows new instructions to be issued
before previous ones have completed, thus increasing the instruction issue rate. Many applications
can tolerate the imprecise fault reporting for the performance gain. A syncf can be used in
imprecise fault mode to isolate faults at desired points of execution when necessary.
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CHAPTER 6
INSTRUCTION SET REFERENCE

This chapter provides detailed information about each instruction available to the i960® Jx
processors. Instructions are listed alphabetically by assembly language mnemonic. Format and
notation used in this chapter are defined in section 6.1, “NOTATION” (pg. 6-1).

Information in this chapter is oriented toward programmers who write assembly language code for
the i960 Jx processors. Information provided for each instruction includes:

Additional information about the instruction set can be found in the following chapters and
appendices in this manual:

• CHAPTER 5, INSTRUCTION SET OVERVIEW - Summarizes the instruction set by group
and describes the assembly language instruction format.

• APPENDIX B, OPCODES AND EXECUTION TIMES - A quick-reference listing of
instruction encodings assists debug with a logic analyzer.

• APPENDIX D, INSTRUCTION SET QUICK REFERENCE - A tabular quick reference of
each instruction’s operation.

• APPENDIX D, MACHINE-LEVEL INSTRUCTION FORMATS - Describes instruction set
opword encodings.

• i960 Jx PROCESSOR INSTRUCTION SET QUICK REFERENCE (order number 272597) -
A pocket-sized quick reference to all Jx instructions.

6.1 NOTATION

In general, notation in this chapter is consistent with usage throughout the manual; however, there
are a few exceptions. Read the following subsections to understand notations that are specific to
this chapter.

• Alphabetic listing of all instructions • Faults that can occur during execution

• Assembly language mnemonic, name and 
format

• Action (or algorithm) and other side effects 
of executing an instruction

• Description of the instruction’s operation • Assembly language example

• Related instructions• Opcode and instruction encoding format
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6.1.1 Alphabetic Reference

Instructions are listed alphabetically by assembly language mnemonic. If several instructions are
related and fall together alphabetically, they are described as a group on a single page.

The instruction’s assembly language mnemonic is shown in bold at the top of the page (e.g.,
subc). Occasionally, it is not practical to list all mnemonics at the page top. In these cases, the
name of the instruction group is shown in capital letters (e.g., BRANCH<cc> or FAULT<cc>).

The i960 Jx processor-specific extensions to the i960 microprocessor instruction set are indicated
in the header text for each such instruction. This type of notation is also used to indicate new core
architecture instructions. Sections describing new core instructions provide notes as to which
i960-series processors do not implement these instructions.

Generally, instruction set extensions are not portable to other i960 processor implementations.
Further, new core instructions are not typically portable to earlier i960 processor family imple-
mentations such as the i960 KX-series microprocessors.

6.1.2 Mnemonic

The Mnemonic section gives the mnemonic (in boldface type) and instruction name for each
instruction covered on the page, for example:

subi Subtract Integer

This name is the actual assembly language instruction name recognized by assemblers.

6.1.3 Format

The Format section gives the instruction’s assembly language format and allowable operand types.
Format is given in two or three lines. The following is a two-line format example:

The first line gives the assembly language mnemonic (boldface type) and operands (italics). When
the format is used for two or more instructions, an abbreviated form of the mnemonic is used. An
* (asterisk) at the end of the mnemonic indicates a variable: in the above example, sub* is either
subi or subo. Capital letters indicate an instruction class. For example, ADD<cc> refers to the
class of conditional add instructions (e.g., addio, addig, addoo, addog).

Operand names are designed to describe operand function (e.g., src, len, mask).

The second line shows allowable entries for each operand. Notation is as follows:

reg Global (g0 ... g15) or local (r0 ... r15) register

sub* src1 src2 dst

reg/lit reg/lit reg
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lit Literal of the range 0 ... 31

disp Signed displacement of range (-222 ... 222 - 1)

mem Address defined with the full range of addressing modes

In some cases, a third line is added to show register or memory location contents. For example, it
may be useful to know that a register is to contain an address. The notation used in this line is as
follows:

addr Address

efa Effective Address

6.1.4 Description

The Description section is a narrative description of the instruction’s function and operands. It also
gives programming hints when appropriate.

6.1.5 Action

The Action section gives an algorithm written in a "C-like" pseudo-code that describes direct
effects and possible side effects of executing an instruction. Algorithms document the instruction’s
net effect on the programming environment; they do not necessarily describe how the processor
actually implements the instruction. The following is an example of the action algorithm for the
alterbit instruction:

if((AC.cc & 0102)==0)
dst = src2 & ~(2**(src1%32));

else
dst = src2 | 2**(src1%32);

Table 6-1 defines each abbreviation used in the instruction reference pseudo-code. 

The pseudo-code has been written to comply as closely as possible with standard C programming
language notation. Table 6-2 lists the pseudocode symbol definitions.
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Table 6-1.  Abbreviations in Pseudo-code

AC.xxx Arithmetic Controls Register fields
AC.cc Condition Code flags (AC.cc2:0)
AC.cc[0] Condition Code Bit 0
AC.cc[1] Condition Code Bit 1
AC.cc[2] Condition Code Bit 2
AC.nif No Imprecise Faults flag
AC.of Integer Overflow flag
AC.om Integer Overflow Mask Bit

PC.xxx Process Controls Register fields
PC.em Execution Mode flag
PC.s State Flag
PC.tfp Trace Fault Pending flag
PC.p Priority Field (PC.p5:0)
PC.te Trace Enable Bit

TC.xxx Trace Controls Register fields
TC.i Instruction Trace Mode Bit
TC.c Call Trace Mode Bit
TC.p Pre-return Trace Mode Bit
TC.br Mark Trace Mode Bit
TC.b Branch Trace Mode Bit
TC.r Return Trace Mode Bit
TC.s Supervisor Trace Mode Bit

PFP.xxx Previous Frame Pointer (r0)
PFP.add Address (PFP.add31:4)
PFP.rrr Return Type Field (PFP.rt2:0)
PFP.p Pre-return Trace flag

sp Stack Pointer (r1)

fp Frame Pointer (g15)

rip Return Instruction Pointer (r2)

SPT System Procedure Table
SSP Supervisor Stack Base Address
SPT(targ) Address of SPT Entry targ
SSP.te Trace Enable

Table 6-2.  Pseudo-code Symbol Definitions (Sheet 1 of 2)

= Assignment

==, != Comparison: equal, not equal

<, > less than, greater than

<=, >= less than or equal to, greater than or equal to

<<, >> Logical Shift

** Exponentiation

&, && Bitwise AND, logical AND
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|, || Bitwise OR, logical OR

^ Bitwise XOR

~ One’s Complement

% Modulo

+, - Addition, Subtraction

* Multiplication (Integer or Ordinal)

/ Division (Integer or Ordinal)

# Comment delimiter

Table 6-3.  Faults Applicable to All Instructions

Fault Type Subtype Description

Operation Unimplemented
An attempt to execute any instruction fetched from internal data 
RAM or a memory-mapped region causes an operation unimple-
mented fault.

Trace

Mark
A Mark Trace Event is signaled after completion of an instruction for 
which there is a hardware breakpoint condition match. A Trace fault 
is generated if PC.m is set.

Instruction
An Instruction Trace Event is signaled after instruction completion. A 
Trace fault is generated if both PC.te and TC.i=1.

Table 6-4.  Common Faulting Conditions

Fault Type Subtype Description

Operation

Unaligned
Any instruction that causes an unaligned memory access causes an 
operation aligned fault if unaligned faults are not masked in the fault 
configuration word in the Processor Control Block (PRCB).

Invalid Opcode
This fault is generated when the processor tries to execute words from 
memory that do not contain code.

Invalid Operand
This fault is caused by a non-defined operand in a supervisor mode only 
instruction or by an operand reference to an unaligned long-, triple- or 
quad-register group.

Unimplemented
This fault can occur due to an attempt to perform a non-word or 
unaligned access to a memory-mapped region or if trying to execute 
from MMR space or internal data RAM.

Type Mismatch
Any instruction that attempts to write to internal data RAM or a memory-
mapped register while not in supervisor mode causes a type mismatch 
fault.

Table 6-2.  Pseudo-code Symbol Definitions (Sheet 2 of 2)

= Assignment
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6.1.6 Faults

The Faults section lists faults that can be signaled as a direct result of instruction execution. Table
6-3 shows the possible faulting conditions that are common to the entire instruction set and could
directly result from any instruction. These fault types are not included in the instruction reference.
Table 6-4 shows the possible faulting conditions that are common to large subsets of the
instruction set. If an instruction can generate a fault, it is noted in that instruction’s Faults
section.Other instructions can generate faults in addition to those shown in the following tables. If
an instruction can generate a fault, it is noted in that instruction’s Faults section.

6.1.7 Example

The Example section gives an assembly language example of an application of the instruction.

6.1.8 Opcode and Instruction Format

The Opcode and Instruction Format section gives the opcode and instruction format for each
instruction, for example:

subi 593H REG

The opcode is given in hexadecimal format. The format is one of four possible formats: REG,
COBR, CTRL and MEM. Refer to APPENDIX D, MACHINE-LEVEL INSTRUCTION
FORMATS for more information on the formats.

6.1.9 See Also

The See Also section gives the mnemonics of related instructions which are also alphabetically
listed in this chapter.

6.1.10 Side Effects

This section indicates whether the instruction causes changes to the condition code bits in the
Arithmetic Controls.
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6.1.11 Notes

This section provides additional information about an instruction such as whether it is
implemented in other i960 processor families. 

6.2 INSTRUCTIONS

This section contains reference information on the processor’s instructions. It is arranged alphabet-
ically by instruction or instruction group.
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6.2.1 ADD<cc> (New 80960 Core Instruction Class)

Mnemonic: addono Add Ordinal if Unordered
addog Add Ordinal if Greater
addoe Add Ordinal if Equal
addoge Add Ordinal if Greater or Equal
addol Add Ordinal if Less
addone Add Ordinal if Not Equal
addole Add Ordinal if Less or Equal
addoo Add Ordinal if Ordered
addino Add Integer if Unordered
addig Add Integer if Greater
addie Add Integer if Equal
addige Add Integer if Greater or Equal
addil Add Integer if Less
addine Add Integer if Not Equal
addile Add Integer if Less or Equal
addio Add Integer if Ordered

Format: add* src1, src2, dst
reg/lit reg/lit reg

Description: Conditionally adds src2 and src1 values and stores the result in dst based on
the AC register condition code. If for Unordered the condition code is 0, or if
for all other cases the logical AND of the condition code and the mask part of
the opcode is not 0, then the values are added and placed in the destination.
Otherwise the destination is left unchanged. Table 6-5 shows the condition
code mask for each instruction. The mask is in opcode bits 4-6.

Action: addo<cc>:
if((mask & AC.cc) || (mask == AC.cc))

dst = (src1 + src2)[31:1];

addi<cc>:
if((mask & AC.cc) || (mask == AC.cc))

dst = (src1 + src2)[31:1];
if((src2[31] == src1[31]) && ((src2[31] != dst[31]))
{ if(AC.om == 1)

AC.of = 1;
else

generate_fault(ARITHMETIC.OVERFLOW);
}

Faults: STANDARD Refer to section 6.1.6, “Faults” (pg. 6-6).
ARITHMETIC.OVERFLOW Occurs only with addi*<cc>.
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Example: # Assume (AC.cc AND 0012) ≠ 0.
addig r4, r8, r10     # r10 = r8 + r4

# Assume (AC.cc AND 1012) = 0.
addone r4, r8, r10    # r10 is not changed. 

Table 6-5.  ADD Condition Codes

Instruction Mask Condition

addono
0002 Unordered

addino

addog
0012 Greater

addig

addoe
0102 Equal

addie

addoge
0112 Greater or equal

addige

addol
1002 Less

addil

addone
1012 Not equal

addine

addole
1102 Less or equal

addile

addoo
1112 Ordered

addio
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Opcode: addono 780H REG
addog 790H REG
addoe 7A0H REG
addoge 7B0H REG
addol 7C0H REG
addone 7D0H REG
addole 7E0H REG
addoo 7F0H REG
addino 781H REG
addig 791H REG
addie 7A1H REG
addige 7B1H REG
addil 7C1H REG
addine 7D1H REG
addile 7E1H REG
addio 7F1H REG

See Also: addc, SUB<cc>, addi, addo

Notes: This class of core instructions is not implemented on 80960Cx, Kx and Sx
processors.
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6.2.2 addc
Mnemonic: addc Add Ordinal With Carry

Format: addc src1, src2, dst
reg/lit reg/lit reg

Description: Adds src2 and src1 values and condition code bit 1 (used here as a carry-in)
and stores the result in dst. If ordinal addition results in a carry out, condition
code bit 1 is set; otherwise, bit 1 is cleared. If integer addition results in an
overflow, condition code bit 0 is set; otherwise, bit 0 is cleared. Regardless of
addition results, condition code bit 2 is always set to 0.

addc can be used for ordinal or integer arithmetic. addc does not distinguish
between ordinal and integer source operands. Instead, the processor evaluates
the result for both data types and sets condition code bits 0 and 1 accordingly.

An integer overflow fault is never signaled with this instruction.

Action: dst = (src1 + src2 + AC.cc[1])[31:0];
AC.cc[2:0] = 0002;
if((src2[31] == src1[31]) && (src2[31] != dst[31]))

AC.cc[0] = 1; # Overflow bit.
AC.cc[1] = (src2 + src1 + AC.cc[1])[32]; # Carry out.

Faults: STANDARD Refer to section 6.1.6, “Faults” (pg. 6-6).

Example: # Example of double-precision arithmetic.
# Assume 64-bit source operands
# in g0,g1 and g2,g3
cmpo 1, 0 # Clears Bit 1 (carry bit) of

# the AC.cc.
addc g0, g2, g0 # Add low-order 32 bits:

# g0 = g2 + g0 + carry bit
addc g1, g3, g1 # Add high-order 32 bits:

# g1 = g3 + g1 + carry bit
# 64-bit result is in g0, g1.

Opcode: addc 5B0H REG

See Also: ADD, SUB

Side Effects: Sets the condition code in the arithmetic controls.
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6.2.3 addi, addo
Mnemonic: addo Add Ordinal

addi Add Integer

Format: add* src1, src2, dst
reg/lit reg/lit reg

Description: Adds src2 and src1 values and stores the result in dst. The binary results from
these two instructions are identical. The only difference is that addi can
signal an integer overflow.

Action: addo:
dst = (src2 +src1)[31:0];

addi:
dst = (src2 + src1)[31:0];
if((src2[31] == src1[31]) && (src2[31] != dst[31]))
{ if(AC.om == 1)

AC.of = 1;
else 

generate_fault(ARITHMETIC_OVERFLOW);
}

Faults: STANDARD Refer to section 6.1.6, “Faults” (pg. 6-6).
ARITHMETIC.OVERFLOW Occurs only with addi. 

Example: addi r4, g5, r9 # r9 = g5 + r4

Opcode: addo 590H REG
addi 591H REG

See Also: addc, subi, subo, subc, ADD
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6.2.4 alterbit
Mnemonic: alterbit Alter Bit

Format: alterbit bitpos, src, dst
reg/lit reg/lit reg

Description: Copies src value to dst with one bit altered. bitpos operand specifies bit to be
changed; condition code determines value to which the bit is set. If condition
code is X1X2, bit 1 = 1, the selected bit is set; otherwise, it is cleared.
Typically this instruction is used to set the bitpos bit in the targ register if the
result of a compare instruction is the equal condition code (0102).

Action: if((AC.cc & 0102)==0)
dst = src2 & ~(2**(SRC1%32));

else
dst = src2 | 2**(src1%32);

Faults: STANDARD Refer to section 6.1.6, “Faults” (pg. 6-6).

Example: # Assume AC.cc = 0102.
alterbit 24, g4,g9 # g9 = g4, with bit 24 set.

Opcode: alterbit 58FH REG

See Also: chkbit, clrbit, notbit, setbit
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6.2.5 and, andnot
Mnemonic: and And

andnot And Not

Format: and src1, src2, dst
reg/lit reg/lit reg

andnot src1, src2, dst
reg/lit reg/lit reg

Description: Performs a bitwise AND (and) or AND NOT (andnot) operation on src2 and
src1 values and stores result in dst. Note in the action expressions below, src2
operand comes first, so that with andnot the expression is evaluated as:

{src2 and not (src1)}
rather than

{src1 and not (src2)}. 

Action: and:
dst = src2 & src1;

andnot:
dst = src2 & ~src1;

Faults: STANDARD Refer to section 6.1.6, “Faults” (pg. 6-6).

Example: and 0x7, g8, g2 # Put lower 3 bits of g8 in g2.
andnot 0x7, r12, r9 # Copy r12 to r9 with lower 

# three bits cleared.

Opcode: and 581H REG
andnot 582H REG

See Also: nand, nor, not, notand, notor, or, ornot, xnor, xor



INSTRUCTION SET REFERENCE

6-15

6

6.2.6 atadd
Mnemonic: atadd Atomic Add

Format: atadd addr, src, dst
reg/lit reg/lit reg

Description: Adds src value (full word) to value in the memory location specified with
addr operand. The operation is performed on the actual data in memory and
never on a cached value on chip. Initial value from memory is stored in dst.

Memory read and write are done atomically (i.e., other bus masters must be
prevented from accessing the word of memory containing the word specified
by src/dst operand until operation completes).

Memory location in addr is the word’s first byte (LSB) address. Address is
automatically aligned to a word boundary. (Note that addr operand maps to
src1 operand of the REG format.)

Action: implicit_syncf();
tempa = addr & 0xFFFFFFFC;
temp = atomic_read(tempa);
atomic_write(tempa, temp+src);
dst = temp;

Faults: STANDARD Refer to section 6.1.6, “Faults” (pg. 6-6).

Example:  atadd r8, r3, r11 # r8 contains the address of
# memory location.
# r11 = (r8)
# (r8) = r11 + r3.

Opcode: atadd 612H REG

See Also: atmod
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6.2.7 atmod
Mnemonic: atmod Atomic Modify

Format: atmod addr mask, src/dst
reg reg/lit reg

Description: Copies the selected bits of src/dst value into memory location specified in
addr. The operation is performed on the actual data in memory and never on
a cached value on chip. Bits set in mask operand select bits to be modified in
memory. Initial value from memory is stored in src/dst.

Memory read and write are done atomically (i.e., other bus masters must be
prevented from accessing the word of memory containing the word specified
with the src/dst operand until operation completes).

Memory location in addr is the modified word’s first byte (LSB) address.
Address is automatically aligned to a word boundary. 

Action: implicit_syncf();
tempa = addr & 0xFFFFFFFC;
temp = atomic_read(tempa);
temp = (temp &~ mask) | (src_dst & mask);
atomic_write(tempa, temp);
src_dst = temp;

Faults: STANDARD Refer to section 6.1.6, “Faults” (pg. 6-6).

Example: atmod g5, g7, g10 # tempa = (g5)
# temp = (tempa andnot g7) or
# (g10 and g7)
# (g5) = temp
# g10 = tempa

Opcode: atmod 610H REG

See Also: atadd
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6.2.8 b, bx
Mnemonic: b Branch

bx Branch Extended

Format: b targ
disp

bx targ
mem

Description: Branches to the specified target. 

With the b instruction, IP specified with targ operand can be no farther than   -
223 to (223- 4) bytes from current IP. When using the Intel i960® processor
assembler, targ operand must be a label which specifies target instruction’s IP.

bx performs the same operation as b except the target instruction can be
farther than -223 to (223- 4) bytes from current IP. Here, the target operand is
an effective address, which allows the full range of addressing modes to be
used to specify target instruction’s IP. The “IP + displacement” addressing
mode allows the instruction to be IP-relative. Indirect branching can be
performed by placing target address in a register then using a register-indirect
addressing mode.

Refer to section 2.3, “MEMORY ADDRESSING MODES” (pg. 2-6) for
information on this subject.

Action: b:
temp[31:2] = sign_extension(targ[23:2]);
IP[31:2] = IP[31:2] + temp[31:2];
IP[1:0] = 0;

bx:
IP[31:2] = effective_address(targ[31:2]);
IP[1:0] = 0;

Faults: STANDARD Refer to section 6.1.6, “Faults” (pg. 6-6).

Example: b xyz # IP = xyz;
bx 1332 (ip) # IP = IP + 8 + 1332;
# this example uses IP-relative addressing

Opcode: b 08H CTRL
bx 84H MEM

See Also: bal, balx, BRANCH, COMPARE AND BRANCH, bbc, bbs
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6.2.9 bal, balx
Mnemonic: bal Branch and Link

balx Branch and Link Extended

Format: bal targ
disp

balx targ, dst
mem reg

Description: Stores address of instruction following bal or balx in a register then branches
to the instruction specified with the targ operand.

The bal and balx instructions are used to call leaf procedures (procedures
that do not call other procedures). The IP saved in the register provides a
return IP that the leaf procedure can branch to (using a b or bx instruction) to
perform a return from the procedure. Note that these instructions do not use
the processor’s call-and-return mechanism, so the calling procedure shares its
local-register set with the called (leaf) procedure. 

With bal, address of next instruction is stored in register g14. targ operand
value can be no farther than -223 to (223- 4) bytes from current IP. When
using the Intel i960 processor assembler, targ must be a label which specifies
the target instruction’s IP.

balx performs same operation as bal except next instruction address is stored
in dst (allowing the return IP to be stored in any available register). With
balx, the full address space can be accessed. Here, the target operand is an
effective address, which allows full range of addressing modes to be used to
specify target IP. “IP + displacement” addressing mode allows instruction to
be IP-relative. Indirect branching can be performed by placing target address
in a register and then using a register-indirect addressing mode.

See section 2.3, “MEMORY ADDRESSING MODES” (pg. 2-6) for a
complete discussion of addressing modes available with memory-type
operands.

Action: bal:
g14 = IP + 4;
IP[31:2] = effective_address(targ[31:2]);
IP[1:0] = 0;

balx:
dst = IP + instruction_length;
# Instruction_length = 4 or 8 depending on the size of target address.
IP[31:2] = effective_address(targ[31:2]);# Resume execution at the new IP.
IP[1:0] = 0;
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Faults: STANDARD Refer to section 6.1.6, “Faults” (pg. 6-6).

Example: bal xyz # g14 = IP + 4
# IP = xyz

balx (g2), g4 # g4 = IP + 4
# IP = (g2)

Opcode: bal 0BH CTRL
balx 85H MEM

See Also: b, bx, BRANCH, COMPARE AND BRANCH, bbc, bbs
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6.2.10 bbc, bbs
Mnemonic: bbc Check Bit and Branch If Clear

bbs Check Bit and Branch If Set

Format: bb* bitpos, src, targ
reg/lit reg disp

Description: Checks bit in src (designated by bitpos) and sets AC register condition code
according to src value. The processor then performs conditional branch to
instruction specified with targ, based on condition code state.

For bbc, if selected bit in src is clear, the processor sets condition code to
0002 and branches to instruction specified by targ; otherwise, it sets
condition code to 0102 and goes to next instruction.

For bbs, if selected bit is set, the processor sets condition code to 0102 and
branches to targ; otherwise, it sets condition code to 0002 and goes to next
instruction. 

targ can be no farther than -212 to (212 - 4) bytes from current IP. When using
the Intel i960 processor assembler, targ must be a label which specifies target
instruction’s IP.

Action: bbs:
if((src2 & 2**(src1%32)) == 1)
{ AC.cc = 0102;

temp[31:2] = sign_extension(targ[12:2]);
IP[31:2] = IP[31:2] + temp[31:2];
IP[1:0] = 0;

}
else

AC.cc = 0002;

bbc:
if((src2 & 2**(src1%32)) == 0)
{ AC.cc = 0002;

temp[31:2] = sign_extension(targ[12:2]);
IP[31:2] = IP[31:2] + temp[31:2];
IP[1:0] = 0;

}
else

AC.cc = 0102;

Faults: STANDARD Refer to section 6.1.6, “Faults” (pg. 6-6).
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Example: # Assume bit 10 of r6 is clear.
bbc 10, r6, xyz # Bit 10 of r6 is checked

# and found clear:
# AC.cc = 000
# IP = xyz;

Opcode: bbc 30H COBR
bbs 37H COBR

See Also: chkbit, COMPARE AND BRANCH<cc>, BRANCH<cc>

Side Effects: Sets the condition code in the arithmetic controls.
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6.2.11 BRANCH<cc>
Mnemonic: be Branch If Equal

bne Branch If Not Equal
bl Branch If Less
ble Branch If Less Or Equal
bg Branch If Greater
bge Branch If Greater Or Equal
bo Branch If Ordered
bno Branch If Unordered

Format: b* targ
disp

Description: Branches to instruction specified with targ operand according to AC register
condition code state. 

For all branch<cc> instructions except bno, the processor branches to
instruction specified with targ, if the logical AND of condition code and
mask-part of opcode is not zero. Otherwise, it goes to next instruction.

For bno, the processor branches to instruction specified with targ if the
condition code is zero. Otherwise, it goes to next instruction.

For instance, bno (unordered) can be used as a branch if false instruction
when coupled with chkbit. For bno, branch is taken if condition code equals
0002. be can be used as branch-if true instruction.

The targ operand value can be no farther than -223 to (223- 4) bytes from
current IP.

The following table shows condition code mask for each instruction. The
mask is in opcode bits 0-2.

Instruction Mask Condition

bno 0002 Unordered

bg 0012 Greater

be 0102 Equal

bge 0112 Greater or 
equal

bl 1002 Less

bne 1012 Not equal

ble 1102 Less or equal

bo 1112 Ordered
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Action: if((mask & AC.cc) || (mask == AC.cc))
{ temp[31:2] = sign_extension(targ[23:2]);

IP[31:2] = IP[31:2] + temp[31:2];
IP[1:0] = 0;

}

Faults: STANDARD Refer to section 6.1.6, “Faults” (pg. 6-6).

Example: # Assume (AC.cc AND 1002) ≠ 0
bl xyz # IP = xyz;

Opcode: be 12H CTRL
bne 15H CTRL
bl 14H CTRL
ble 16H CTRL
bg 11H CTRL
bge 13H CTRL
bo 17H CTRL
bno 10H CTRL

See Also: b, bx, bbc, bbs, COMPARE AND BRANCH, bal, balx, BRANCH
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6.2.12 bswap (New 80960 Core Instruction)

Mnemonic: bswap Byte Swap

Format: bswap src1:src src2:dst
reg/lit reg

Description: Alter the order of bytes in a word, reversing its “endianess.” 

Copies bytes 3:0 of src1 to src2 reversing order of the bytes. Byte 0 of src1
becomes byte 3 of src2, byte 1 of src1 becomes byte 2 of src2, etc.

Action: dst = (rotate_left(src 8) & 0x00FF00FF)
        +(rotate_left(src 24) & 0xFF00FF00);

Faults: STANDARD Refer to section 6.1.6, “Faults” (pg. 6-6).

Example: # g8 = 0x89ABCDEF
bswap g8, g10 # Reverse byte order.

# g10 now 0xEFCDAB89

Opcode: bswap 5ADH REG 

See Also: scanbyte, rotate

Notes: This core instruction is not implemented on Cx, Kx and Sx 80960 processors.
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6.2.13 call
Mnemonic: call Call

Format: call targ
disp

Description: Calls a new procedure. targ operand specifies the IP of called procedure’s first
instruction. When using the Intel i960 processor assembler, targ must be a
label.

In executing this instruction, the processor performs a local call operation as
described in section 7.1.3.1, “Call Operation” (pg. 7-7). As part of this
operation, the processor saves the set of local registers associated with the
calling procedure and allocates a new set of local registers and a new stack
frame for the called procedure. Processor then goes to the instruction
specified with targ and begins execution.

targ can be no farther than -223 to (223 - 4) bytes from current IP.

Action: # Wait for any uncompleted instructions to finish.
implicit_syncf();
temp =  (SP + (SALIGN*16 - 1)) & ~(SALIGN*16 - 1)

# Round stack pointer to next boundary.
# SALIGN=1 on i960 Jx processors.       

RIP = IP; 
if (register_set_available)

allocate_new_frame( ); 
else

{ save_register_set( ); # Save register set in memory at its FP. 
allocate_new_frame( ); 

}
# Local register references now refer to new frame. 

IP = targ 
PFP = FP; 
FP = temp; 
SP = temp + 64; 

Faults: STANDARD Refer to section 6.1.6, “Faults” (pg. 6-6).

Example: call xyz # IP = xyz

Opcode: call 09H CTRL

See Also: bal, calls, callx
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6.2.14 calls
Mnemonic: calls Call System

Format: calls targ
reg/lit

Description: Calls a system procedure. The targ operand gives the number of the
procedure being called. For calls, the processor performs system call
operation described in section 7.5, “SYSTEM CALLS” (pg. 7-16). targ
provides an index to a system procedure table entry from which the processor
gets the called procedure’s IP.

The called procedure can be a local or supervisor procedure, depending on
system procedure table entry type. If it is a supervisor procedure, the
processor switches to supervisor mode (if not already in this mode).

As part of this operation, processor also allocates a new set of local registers
and a new stack frame for called procedure. If the processor switches to
supervisor mode, the new stack frame is created on the supervisor stack.

Action: # Wait for any uncompleted instructions to finish.
implicit_syncf();
If (targ > 259) 

generate_fault(PROTECTION.LENGTH);
temp = get_sys_proc_entry(sptbase + 48 + 4*targ);
             # sptbase is address of supervisor procedure table.

 if (frame_available)
      allocate_new_frame( );

else 
{ save_frame( ); # Save a frame in memory at its FP.

          allocate_new_frame( );
             # Local register references now refer to new frame.

}
RIP = IP;
IP = temp;
if ((temp.type == local) ||  (PC.em == supervisor))

{ # Local call or supervisor call from supervisor mode.
   temp =  (SP + (SALIGN*16 - 1)) & ~(SALIGN*16 - 1)

# Round stack pointer to next boundary.
# SALIGN=1 on i960 Jx processors.       
temp.RRR = 0002;

}
else # Supervisor call from user mode.
{ tempa = SSP; # Get Supervisor Stack pointer.
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temp.RRR = 0102 | PC.te;  
 PC.em = supervisor;
 PC.te = temp.te;

}
PFP = FP;
PFP.rrr = tempRRR;
FP = tempa;

Faults: STANDARD Refer to section 6.1.6, “Faults” (pg. 6-6).
PROTECTION.LENGTH Specifies a procedure number greater than

259.

Example: calls r12 # IP = value obtained from
# procedure table for procedure
# number given in r12.

calls 3 # Call procedure 3.

Opcode: calls 660H REG

See Also: bal, call, callx
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6.2.15 callx
Mnemonic: callx Call Extended

Format: callx targ
mem

Description: Calls new procedure. targ specifies IP of called procedure’s first instruction.

In executing callx, the processor performs a local call as described in section
7.1.3.1, “Call Operation” (pg. 7-7). As part of this operation, the processor
allocates a new set of local registers and a new stack frame for the called
procedure. Processor then goes to the instruction specified with targ and
begins execution of new procedure.

callx performs the same operation as call except the target instruction can be
farther than -223 to (223 - 4) bytes from current IP.

The targ operand is a memory type, which allows the full range of addressing
modes to be used to specify the IP of the target instruction. The “IP +
displacement” addressing mode allows the instruction to be IP-relative.
Indirect calls can be performed by placing the target address in a register and
then using one of the register-indirect addressing modes.

Refer to Chapter 2, DATA TYPES AND MEMORY ADDRESSING
MODES for more information.

Action: # Wait for any uncompleted instructions to finish; 
implicit_syncf();
   temp =  (SP + (SALIGN*16 - 1)) & ~(SALIGN*16 - 1)

# Round stack pointer to next boundary.
# SALIGN=1 on i960 Jx processors.       

RIP = IP; 
if (register_set_available)

allocate_new_frame( ); 
else

{ save_register_set( ); # Save register set in memory at its FP; 
allocate_new_frame( ); 

}
# Local register references now refer to new frame. 

IP = targ 
PFP = FP; 
FP = temp; 
SP = temp + 64; 

Faults: STANDARD Refer to section 6.1.6, “Faults” (pg. 6-6).
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Example: callx (g5) # IP = (g5), where the address in g5
# is the address of the new procedure. 

Opcode: callx 86H MEM

See Also: call, calls, bal
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6.2.16 chkbit
Mnemonic: chkbit Check Bit

Format: chkbit bitpos, src2
reg/lit reg/lit

Description: Checks bit in src2 designated by bitpos and sets condition code according to
value found. If bit is set, condition code is set to 0102; if bit is clear, condition
code is set to 0002.

Action: if (((src2 & 2**(bitpos % 32)) == 0) 
AC.cc = 0002; 

else
AC.cc = 0102;

Faults: STANDARD Refer to section 6.1.6, “Faults” (pg. 6-6).

Example: chkbit 13, g8 # Checks bit 13 in g8 and sets
# AC.cc according to the result.

Opcode: chkbit 5AEH REG

See Also: alterbit, clrbit, notbit, setbit, cmpi, cmpo

Side Effects: Sets the condition code in the arithmetic controls.
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6.2.17 clrbit
Mnemonic: clrbit Clear Bit

Format: clrbit bitpos, src, dst
reg/lit reg/lit reg

Description: Copies src value to dst with one bit cleared. bitpos operand specifies bit to be
cleared. 

Action: dst = src2 & ~(2**(src1%32)); 

Faults: STANDARD Refer to section 6.1.6, “Faults” (pg. 6-6).

Example: clrbit 23, g3, g6 # g6 = g3 with bit 23 cleared.

Opcode: clrbit 58CH REG

See Also: alterbit, chkbit, notbit, setbit
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6.2.18 cmpdeci, cmpdeco
Mnemonic: cmpdeci Compare and Decrement Integer

cmpdeco Compare and Decrement Ordinal

Format: cmpdec* src1, src2, dst
reg/lit reg/lit reg

Description: Compares src2 and src1 values and sets the condition code according to
comparison results. src2 is then decremented by one and result is stored in
dst. The following table shows condition code setting for the three possible
results of the comparison.

These instructions are intended for use in ending iterative loops. For
cmpdeci, integer overflow is ignored to allow looping down through the
minimum integer values. 

Action: if(src1 < src2)
AC.cc = 1002;

else if(src1 == src2)
AC.cc = 0102;

else
AC.cc = 0012;

dst = src2 -1; # Overflow suppressed for cmpdeci.

Faults: STANDARD Refer to section 6.1.6, “Faults” (pg. 6-6).

Example: cmpdeci 12, g7, g1 # Compares g7 with 12 and sets
# AC.cc to indicate the result
# g1 = g7 - 1.

Opcode: cmpdeci 5A7H REG
cmpdeco 5A6H REG

See Also: cmpinco, cmpo, cmpi, cmpinci, COMPARE AND BRANCH

Side Effects: Sets the condition code in the arithmetic controls.

Condition Code Comparison

1002 src1 < src2

0102 src1 = src2

0012 src1 > src2
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6.2.19 cmpinci, cmpinco
Mnemonic: cmpinci Compare and Increment Integer

cmpinco Compare and Increment Ordinal

Format: cmpinc* src1, src2, dst
reg/lit reg/lit reg

Description: Compares src2 and src1 values and sets the condition code according to
comparison results. src2 is then incremented by one and result is stored in dst.
The following table shows condition code settings for the three possible
comparison results.

These instructions are intended for use in ending iterative loops. For cmpinci,
integer overflow is ignored to allow looping up through the maximum integer
values. 

Action: if (src1 < src2)  
AC.cc = 1002; 

else if (src1 == src2)  
AC.cc = 0102; 

else
AC.cc = 0012;

cmpinco: 
dst = src2 + 1; 
cmpinci:
 dst = src2 + 1; # Overflow suppressed.

Faults: STANDARD Refer to section 6.1.6, “Faults” (pg. 6-6).

Example: cmpinco r8, g2, g9 # Compares the values in g2 
# and r8 and sets AC.cc to
# indicate the result:
# g9 = g2 + 1

Opcode: cmpinci 5A5H REG
cmpinco 5A4H REG

See Also: cmpdeco, cmpo, cmpi, cmpdeci, COMPARE AND BRANCH

Side Effects: Sets the condition code in the arithmetic controls.

Condition Code Comparison

1002 src1 < src2

0102 src1 = src2

0012 src1 > src2
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6.2.20 COMPARE (Includes New 80960 Core Instructions)

Mnemonic: cmpi Compare Integer
cmpib Compare Integer Byte
cmpis Compare Integer Short
cmpo Compare Ordinal
cmpob Compare Ordinal Byte
cmpos Compare Ordinal Short

Format: cmp* src1, src2
reg/lit reg/lit

Description: Compares src2 and src1 values and sets condition code according to
comparison results. The following table shows condition code settings for the
three possible comparison results.

cmpi* followed by a branch-if instruction is equivalent to a compare-integer-
and-branch instruction. The latter method of comparing and branching
produces more compact code; however, the former method can execute byte
and short compares without masking. The same is true for cmpo* and the
compare-ordinal-and-branch instructions.

Action: # For cmpo, cmpi N = 31. 
# For cmpos, cmpis N = 15.
# For cmpob, cmpib N = 7.

if (src1[N:0] < src2[N:0])
AC.cc = 1002; 

else if (src1[N:0] == src2[N:0])
 AC.cc = 0102; 
else if (src1[N:0] > src2[N:0])

AC.cc = 0012; 

Faults: STANDARD Refer to section 6.1.6, “Faults” (pg. 6-6).

Condition Code Comparison

1002 src1 < src2

0102 src1 = src2

0012 src1 > src2
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Example: cmpo r9, 0x10 # Compares the value in r9 with 0x10
# and sets AC.cc to indicate the
# result.

bg xyz # Branches to xyz if the value of r9
# was greater than 0x10.

Opcode: cmpi 5A1H REG
cmpib 595H REG 
cmpis 597H REG
cmpo 5A0H REG
cmpob 594H REG
cmpos 596H REG

See Also: COMPARE AND BRANCH, cmpdeci, cmpdeco, cmpinci, cmpinco,
concmpi, concmpo

Side Effects: Sets the condition code in the arithmetic controls.

Notes: The core instructions cmpib, cmpis, compob and compos are not imple-
mented on Cx, Kx and Sx 80960 processors.
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6.2.21 COMPARE AND BRANCH
Mnemonic: cmpibe Compare Integer and Branch If Equal

cmpibne Compare Integer and Branch If Not Equal
cmpibl Compare Integer and Branch If Less
cmpible Compare Integer and Branch If Less Or Equal
cmpibg Compare Integer and Branch If Greater
cmpibge Compare Integer and Branch If Greater Or Equal
cmpibo Compare Integer and Branch If Ordered
cmpibno Compare Integer and Branch If Not Ordered

cmpobe Compare Ordinal and Branch If Equal
cmpobne Compare Ordinal and Branch If Not Equal
cmpobl Compare Ordinal and Branch If Less
cmpoble Compare Ordinal and Branch If Less Or Equal 
cmpobg Compare Ordinal and Branch If Greater
cmpobge Compare Ordinal and Branch If Greater Or Equal 

Format: cmpib* src1, src2, targ
reg/lit reg disp

cmpob* src1, src2, targ
reg/lit reg disp

Description: Compares src2 and src1 values and sets AC register condition code according
to comparison results. If logical AND of condition code and mask part of
opcode is not zero, the processor branches to instruction specified with targ;
otherwise, the processor goes to next instruction.

targ can be no farther than -212 to (212 - 4) bytes from current IP. When using
the Intel i960 processor assembler, targ must be a label which specifies target
instruction’s IP.

Functions these instructions perform can be duplicated with a cmpi or cmpo
followed by a branch-if instruction, as described in section 6.2.20,
“COMPARE (Includes New 80960 Core Instructions)” (pg. 6-34).
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The following table shows the condition-code mask for each instruction. The
mask is in bits 0-2 of the opcode.

Action: if(src1 < src2)
AC.cc = 1002;

else if(src1 == src2)
AC.cc == 0102;

else
AC.cc = 0012;

if((mask && AC.cc) != 0002)
IP[31:2] = efa[31:2]; # Resume execution at the new IP.
IP[1:0] = 0;

Faults: STANDARD Refer to section 6.1.6, “Faults” (pg. 6-6).

Example: # Assume g3 < g9
cmpibl g3, g9, xyz # g9 is compared with g3;

# IP = xyz.
# assume 19 ≥ r7
cmpobge 19, r7, xyz # 19 is compared with r7;

# IP = xyz.

Instruction Mask Branch Condition

cmpibno 0002 No Condition

cmpibg 0012 src1 > src2

cmpibe 0102 src1 = src2

cmpibge 0112 src1 ≥ src2

cmpibl 1002 src1 < src2

cmpibne 1012 src1 ≠ src2

cmpible 1102 src1 ≤ src2

cmpibo 1112 Any Condition

cmpobg 0012 src1 > src2

cmpobe 0102 src1 = src2

cmpobge 0112 src1 ≥ src2

cmpobl 1002 src1 < src2

cmpobne 1012 src1 ≠ src2

cmpoble 1102 src1 ≤ src2

NOTE: cmpibo always branches; cmpibno never 
branches. 
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Opcode: cmpibe 3AH COBR
cmpibne 3DH COBR
cmpibl 3CH COBR
cmpible 3EH COBR
cmpibg 39H COBR
cmpibge 3BH COBR
cmpibo 3FH COBR
cmpibno 38H COBR
cmpobe 32H COBR
cmpobne 35H COBR
cmpobl 34H COBR
cmpoble 36H COBR
cmpobg 31H COBR
cmpobge 33H COBR

See Also: BRANCH<cc>, cmpi, cmpo, bal, balx

Side Effects: Sets the condition code in the arithmetic controls.
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6.2.22 concmpi, concmpo
Mnemonic: concmpi Conditional Compare Integer

concmpo Conditional Compare Ordinal

Format: concmp* src1, src2
reg/lit reg/lit

Description: Compares src2 and src1 values if condition code bit 2 is not set. If
comparison is performed, condition code is set according to comparison
results.  Otherwise, condition codes are not altered.

These instructions are provided to facilitate bounds checking by means of
two-sided range comparisons (e.g., is A between B and C?). They are
generally used after a compare instruction to test whether a value is
inclusively between two other values.

The example below illustrates this application by testing whether g3 value is
between g5 and g6 values, where g5 is assumed to be less than g6. First a
comparison (cmpo) of g3 and g6 is performed. If g3 is less than or equal to
g6 (i.e., condition code is either 0102 or 0012), a conditional comparison
(concmpo) of g3 and g5 is then performed. If g3 is greater than or equal to g5
(indicating that g3 is within the bounds of g5 and g6), condition code is set to
0102; otherwise, it is set to 0012.

Action: if (AC.cc != 1XX2) 
{ if(src1 <= src2) 

AC.cc = 0102;
else 

AC.cc  = 0012;
} 

Faults: STANDARD Refer to section 6.1.6, “Faults” (pg. 6-6).

Example: cmpo g6, g3 # Compares g6 and g3 
# and sets AC.cc.

concmpo g5, g3 # If AC.cc < 1002 (g6 ≥ g3)
# g5 is compared with g3.

At this point, depending on the register ordering, the condition code is one of 
those listed on Table 6.6.
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Opcode: concmpi 5A3H REG
concmpo 5A2H REG

See Also: cmpo, cmpi, cmpdeci, cmpdeco, cmpinci, cmpinco, COMPARE AND
BRANCH

Side Effects: Sets the condition code in the arithmetic controls.

Table 6.6.  concmpo example: register ordering and CC

Order CC

g5 < g6 < g3 1002

g5 < g6 = g3 0102

g5 < g3 < g6 0102

g5 = g3 < g6 0102

g3 < g5 < g6 0012
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6.2.23 dcctl (80960Jx-Specific Instruction)

Mnemonic: dcctl Data-cache Control

Format: src1, src2, src/dst
reg/lit reg/lit reg

Description: Performs management and control of the data cache including disabling,
enabling, invalidating, ensuring coherency, getting status, and storing cache
contents to memory. Operations are indicated by the value of src1. src2 and
src/dst are also used by some operations. When needed by the operation, the
processor orders the effects of the operation with previous and subsequent
operations to ensure correct behavior.

Table 6-7.  DCCTL Operand Fields

Function src1 src2 src/dst

Disable Dcache 0 NA NA

Enable Dcache 1 NA NA

Global invalidate 
Dcache

2 NA NA

Ensure cache 
coherency1 3 NA NA

Get Dcache status 4 NA

src: N/A
dst: Receives 
Dcache status 
(see Figure 6-1).

Store Dcache to 
memory

6
Destination 
address for  cache 
sets

src: Dcache set 
#’s to be stored 
(see Figure 6-1).

1. Invalidates data cache on 80960Jx.



INSTRUCTION SET REFERENCE

6-42

Figure 6-1.  DCCTL src1 and src/dst Formats

8    7 031

Src1 Format
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Src/Dst Format for Data Cache Status

3711

Enabled = 1
Disabled = 0

# of Ways-1

031

Src/Dst Format for Store Data Cache Sets to Memory

16   15

Starting Set #Ending Set #

Function Type

Reserved, 
(Initialize to 0)

log2 (# of Sets)
log2 (Atoms/Line)

log2 (Bytes/Atom)
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Figure 6-2.  Store Data Cache to Memory Output Format

Table 6.8.  DCCTL Status Values and D-Cache Parameters

Value
Value on 

i960JA CPU
Value on i960JD/JF 

CPU

bytes per atom 4 4

atoms per line 4 4

number of sets 64 128 (full)

number of ways 1 (Direct) 1 (Direct)

cache size 1-Kbytes 2-Kbytes(full) 

Status[0] (enable / disable) 0 or 1 0 or 1

Status[1:3] (reserved) 0 0

Status[7:4] (log2(bytes per atom)) 2 2

Status[11:8] (log2(atoms per line)) 2 2

Status[15:12] (log2(number of sets)) 6 7 (full)

Status[27:16] (number of ways - 1) 0 0

  0
Destination 
Address (DA)

Tag (Starting set) DA + 4H

Valid Bits (Starting set) DA + 8H

Word 0 DA + CH

Word 1 DA + 10H

Word 2 DA + 14H

Word 3 DA + 18H

Tag (Starting set) DA + 1CH

Valid Bits (Starting set) DA + 20H

Word 0 DA + 24H

Word 1 DA + 28H

Word 2 DA + 2CH

Word 3 DA + 30H

 0 DA + 34H

Tag (Starting set + 1) DA + 38H

Valid Bits (Starting set + 1) DA + 3CH

. . . . . .

W
ay

 0
W

ay
 1

W
ay

 0
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Action: if (PC.em != supervisor) 
generate_fault(TYPE.MISMATCH);

order_wrt(previous_operations);
switch (src1[7:0]) {

case 0: # Disable data cache.
disable_Dcache( );
break;

case 1: # Enable data cache.
enable_Dcache( );
break;

case 2: # Global invalidate data cache.
invalidate_Dcache( );
break;

case 3: # Ensure coherency of data cache with memory.
# Causes data cache to be invalidated on this processor.
ensure_Dcache_coherency( );
break;

case 4: # Get data cache status into src/dst.
if (Dcache_enabled) src/dst[0] = 1;
else src/dst[0] = 0;
# Atom is 4 bytes.
src/dst[7:4] = log2(bytes per atom);
# 4 atoms per line.
src/dst[11:8] = log2(atoms per line);
src/dst[15:12] = log2(number of sets);
src/dst[27:16] = number of ways-1; # in lines per set
# cache size = ([27:16]+1) << ([7:4] + [11:8] + [15:12]).
break;

Table 6-9.  Valid_Bits Values

Bit Meaning

0 Tag Valid bit for current Set and Way

1 Valid Bit for Word 0 of current Set and Way

2 Valid Bit for Word 1 of current Set and Way

3 Valid Bit for Word 2 of current Set and Way

4 Valid Bit for Word 3 of current Set and Way

5-31 Reserved, Read as Zero. 
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Action: case 6: # Store data cache sets to memory pointed to by src2.
start = src/dst[15:0] # Starting set number.
end   = src/dst[31:16] # Ending set number. 

# (zero-origin).
if (end >= Dcache_max_sets) end = Dcache_max_sets - 1;
if (start > end) generate_fault

(OPERATION.INVALID_OPERAND);
memadr = src2; # Must be word-aligned.
if (0x3 & memadr! = 0)
generate_fault(OPERATION.INVALID_OPERAND)
for (set = start; set <= end; set++){ 

# Set_Data is described at end of this code flow.
 memory[memadr] = Set_Data[set];
 memadr += 4;
 for (way = 0; way < numb_ways; way++)

{memory[memadr] = tags[set][way];
 memadr += 4;
 memory[memadr] = valid_bits[set][way];
 memadr += 4;
for (word = 0; word < words_in_line; word++)

{memory[memadr] =
 Dcache_line[set][way][word];

  memadr += 4;
 }
}

}
break;

default: # Reserved.
generate_fault(OPERATION.INVALID_OPERAND);
break;

}
order_wrt(subsequent_operations)

;

Faults: STANDARD Refer to section 6.1.6,
“Faults” (pg. 6-6).

TYPE.MISMATCH Attempt to execute
instruction while not in
supervisor mode.

OPERATION.INVALID_OPERAND
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Example: # g0 = 6, g1 = 0x10000000,
# g2 = 0x001F0001

dcctl g0,g1,g2 # Store the status of Dcache
# sets 1-0x1F to memory starting
# at 0x10000000.

Opcode: dcctl 65CH REG 

See Also: sysctl

Notes: DCCTL function 6 stores data-cache sets to a target range in external mem-
ory. For any memory location that is cached and also within the target range
for function 6, the corresponding word-valid bit will be cleared after function
6 completes to ensure data-cache coherency. Thus, dcctl function 6 can alter
the state of the cache after it completes, but only the word-valid bits. In all
cases, even when the cache sets to store to external memory overlap the cache
sets which map the target range in external memory, DCCTL function 6
always returns the state of the cache as it existed when the DCCTL was
issued.

This instruction is implemented on the 80960Jx processor family only, and
may or may not be implemented on future i960 processors.
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6.2.24 divi, divo
Mnemonic: divi Divide Integer

divo Divide Ordinal

Format: div* src1, src2, dst
reg/lit reg/lit reg

Description: Divides src2 value by src1 value and stores the result in dst. Remainder is
discarded.

For divi, an integer-overflow fault can be signaled.

Action: divo:
if (src1 == 0) 

generate_fault (ARITHMETIC.ZERO_DIVIDE);
else

dst = src2/src1;

divi:
if (src1 == 0) 
{ dst = undefined_value;

generate_fault (ARITHMETIC.ZERO_DIVIDE);}
else if ((src2 == -2**31) && (src1 == -1)) 

{ dst = -2**31
if (AC.om == 1) 

AC.of  = 1;
else

generate_fault (ARITHMETIC.OVERFLOW);
}

else
dst  = src2 / src1; 

Faults: STANDARD Refer to Section 6.1.6 on page 6-6.
ARITHMETIC.ZERO_DIVIDE The src1 operand is 0. 
ARITHMETIC.OVERFLOW Result too large for destination register

(divi only). If overflow occurs and
AC.om=1, fault is suppressed and
AC.of is set to 1. Result’s least
significant 32 bits are stored in dst.

Example: divo r3, r8, r13 # r13 = r8/r3

Opcode: divi 74BH REG
divo 70BH REG

See Also: ediv, mulo, muli, emul
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6.2.25 ediv
Mnemonic: ediv Extended Divide

Format: ediv src1, src2, dst
reg/lit reg/lit reg

Description: Divides src2 by src1 and stores result in dst. The src2 value is a long ordinal
(64 bits) contained in two adjacent registers. src2 specifies the lower
numbered register which contains operand’s least significant bits. src2 must
be an even numbered register (i.e., g0, g2, ... or r4, r6, r8... ). src1 value is a
normal ordinal (i.e., 32 bits).

The result consists of a one-word remainder and a one-word quotient.
Remainder is stored in the register designated by dst; quotient is stored in the
next highest numbered register. dst must be an even numbered register (i.e.,
or g0, g2, ... r4, r6, r8, ...).

This instruction performs ordinal arithmetic.

If this operation overflows (quotient or remainder do not fit in 32 bits), no
fault is raised and the result is undefined.

Action: if((reg_number(src2)%2 != 0) || (reg_number(dst[0])%2 != 0))
{ dst[0] = undefined_value;

dst[1] = undefined_value;
generate_fault (OPERATION.INVALID_OPERAND);

}
else if(src1 == 0)
{ dst[0] = undefined_value;

dst[1] = undefined_value;
generate_fault(ARITHMETIC.DIVIDE_ZERO);

}
else # Quotient
{ dst[1] = ((src2 + reg_value(src2[1]) * 2**32) / src1)[31:0];

#Remainder
dst[0] = (src2 + reg_value(src2[1]) * 2**32 

- ((src2 + reg_value(src2[1]) * 2**32 / src1) * src1);
}

Faults: STANDARD Refer to section 6.1.6, “Faults” (pg.
6-6).

ARITHMETIC.ZERO_DIVIDE The src1 operand is 0. 
OPERATION.INVALID_OPERAND
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Example: ediv g3, g4, g10 # g10 = remainder of g4,g5/g3
# g11 = quotient of g4,g5/g3

Opcode: ediv 671H REG

See Also: emul, divi, divo
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6.2.26 emul
Mnemonic: emul Extended Multiply

Format: emul src1, src2, dst
reg/lit reg/lit reg

Description: Multiplies src2 by src1 and stores the result in dst. Result is a long ordinal
(64 bits) stored in two adjacent registers. dst specifies lower numbered
register, which receives the result’s least significant bits. dst must be an even
numbered register (i.e., or g0, g2, ... r4, r6, r8, ...).

This instruction performs ordinal arithmetic.

Action: if(reg_number(dst)%2 != 0)
{ dst[0] = undefined_value;

dst[1] = undefined_value;
generate_fault(OPERATION.INVALID_OPERAND);

}
else
{ dst[0] = (src1 * src2)[31:0];

dst[1] = (src1 * src2)[63:32];
}

Faults: STANDARD Refer to section 6.1.6, “Faults” (pg. 6-6).

Example: emul r4, r5, g2 # g2,g3 = r4 * r5.

Opcode: emul 670H REG

See Also: ediv, muli, mulo
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6.2.27 eshro
Mnemonic: eshro Extended Shift Right Ordinal

Format: eshro src1 src2 dst
reg/lit reg/lit reg

Description: Shifts src2 right by (src1 mod 32) places and stores the result in dst. Bits
shifted beyond the least-significant bit are discarded.

src2 value is a long ordinal (i.e., 64 bits) contained in two adjacent registers.
src2 operand specifies the lower numbered register, which contains operand’s
least significant bits. src2 operand must be an even numbered register (i.e., r4,
r6, r8, ... or g0, g2).

src1 operand is a single 32-bit register or literal where the lower 5 bits specify
the number of places that the src2 operand is to be shifted.

The least significant 32 bits of the shift operation result are stored in dst.

Action: if(reg_number(src2)%2 != 0)
{ dst[0] = undefined_value;

dst[1] = undefined_value;
generate_fault(OPERATION.INVALID_OPERAND);

}
else

dst = shift_right((src2 + reg_value(src2[1]) * 2**32),(src1%32))[31:0];

Faults: STANDARD Refer to section 6.1.6, “Faults” (pg. 6-6).

Example: eshro g3, g4, g11 # g11 = g4,5 shifted right by
# (g3 MOD 32).

Opcode: eshro 5D8 REG

See Also: SHIFT, extract

Notes: This core instruction is not implemented on the Kx and Sx 80960 processors.
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6.2.28 extract
Mnemonic: extract Extract

Format: extract bitpos len src/dst
reg/lit reg/lit reg

Description: Shifts a specified bit field in src/dst right and zero fills bits to left of shifted
bit field. bitpos value specifies the least significant bit of the bit field to be
shifted; len value specifies bit field length.

Action: src_dst = (src_dst /2**(src1%32)) & ((2**src2) - 1);

Faults: STANDARD Refer to section 6.1.6, “Faults” (pg. 6-6).

Example: extract 5, 12, g4 # g4 = g4 with bits 5 through
# 16 shifted right.

Opcode: extract 651H REG

See Also: modify
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6.2.29 FAULT<cc>
Mnemonic: faulte Fault If Equal

faultne Fault If Not Equal
faultl Fault If Less
faultle Fault If Less Or Equal
faultg Fault If Greater
faultge Fault If Greater Or Equal
faulto Fault If Ordered
faultno Fault If Not Ordered

Format: fault*

Description: Raises a constraint-range fault if the logical AND of the condition code and
opcode’s mask-part is not zero. For faultno (unordered), fault is raised if
condition code is equal to 0002.

faulto and faultno are provided for use by implementations with a floating
point coprocessor. They are used for compare and branch (or fault) operations
involving real numbers.

The following table shows the condition-code mask for each instruction. The
mask is opcode bits 0-2.

Action: For all except faultno:
if(mask && AC.cc != 0002)

generate_fault(CONSTRAINT.RANGE);

faultno:
if(AC.cc = 0002)

generate_fault(CONSTRAINT.RANGE);

Faults: STANDARD Refer to section 6.1.6, “Faults” (pg. 6-6).
CONSTRAINT.RANGE If condition being tested is true.

Instruction Mask Condition

faultno 0002 Unordered

faultg 0012 Greater

faulte 0102 Equal

faultge 0112 Greater or equal

faultl 1002 Less

faultne 1012 Not equal

faultle 1102 Less or equal

faulto 1112 Ordered
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Example: # Assume (AC.cc AND 1102)≠ 0002
faultle # Constraint Range Fault is generated.

Opcode: faulte 1AH CTRL
faultne 1DH CTRL
faultl 1CH CTRL
faultle 1EH CTRL
faultg 19H CTRL
faultge 1BH CTRL
faulto 1FH CTRL
faultno 18H CTRL

See Also: BRANCH<cc>, TEST<cc>
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6.2.30 flushreg
Mnemonic: flushreg Flush Local Registers

Format: flushreg

Description: Copies the contents of every cached register set—except the current set—to
its associated stack frame in memory. The entire register cache is then marked
as purged (or invalid). On a return to a stack frame for which the local
registers are not cached, the processor reloads the locals from memory.

flushreg is provided to allow a debugger or application program to
circumvent the processor’s normal call/return mechanism. For example, a
debugger may need to go back several frames in the stack on the next return,
rather than using the normal return mechanism that returns one frame at a
time. Since the local registers of an unknown number of previous stack
frames may be cached, a flushreg must be executed prior to modifying the
PFP to return to a frame other than the one directly below the current frame.

Action: Each local cached register set except the current one is flushed to its
associated stack frame in memory and marked as purged, meaning that they
will be reloaded from memory if and when they become the current local
register set.

Faults: STANDARD Refer to section 6.1.6, “Faults” (pg. 6-6).

Example: flushreg

Opcode: flushreg 66D REG
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6.2.31 fmark
Mnemonic: fmark Force Mark

Format: fmark

Description: Generates a mark trace event. Causes a mark trace event to be generated,
regardless of mark trace mode flag setting, providing the trace enable bit, bit
0 in the Process Controls, is set. 

For more information on trace fault generation, refer to  CHAPTER 10,
TRACING AND DEBUGGING.

Action: A mark trace event is generated, independent of the setting of the mark-trace-
mode flag. 

Faults: STANDARD Refer to section 6.1.6, “Faults” (pg. 6-6).
TRACE.MARK A TRACE.MARK fault is generated if PC.te=1.

Example: # Assume PC.te = 1
fmark
# Mark trace event is generated at this point in the
# instruction stream.

Opcode: fmark 66CH REG

See Also: mark
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6.2.32 halt (80960Jx-Specific Instruction)

Mnemonic: halt Halt CPU

Format: halt src1
reg/lit

Description: Causes the processor to enter HALT mode which is described in Chapter 16,
HALT MODE. Entry into Halt mode allows the interrupt enable state to be
conditionally changed based on the value of src1.

The processor exits Halt mode on a hardware reset or upon receipt of an
interrupt that should be delivered based on the current process priority. After
executing the interrupt that forced the processor out of Halt mode, execution
resumes at the instruction immediately after the halt instruction. The
processor must be in supervisor mode to use this instruction.

Action: implicit_syncf;
if (PC.em != supervisor)
   generate_fault( TYPE.MISMATCH);
switch(src1) {

case 0: # Disable interrupts. Clear ICON.gie. 
global_interrupt_enable = true; break;

case 1: # Enable interrupts. Set ICON.gie. 
        global_interrupt_enable = false; break;

case 2: # Use the current interrupt enable state. 
break;

default:
generate_fault( OPERATION.INVALID_OPERAND );
break;

}

ensure_bus_is_quiescient;
enter_HALT_mode;

Faults: STANDARD Refer to section 6.1.6, “Faults”
(pg. 6-6).

TYPE.MISMATCH Attempt to execute instruction
while not in supervisor mode.

OPERATION.INVALID_OPERAND

src1 Operation

0 Disable interrupts and halt

1 Enable interrupts and halt

2
Use current interrupt enable 
state and halt.

Errata, 4-18-95. BWL.
Section 6.6.32 (pg 6-57)

The action section of the halt 
instruction contains the 
following incorrect pseudocode:

case 0: # Disable interrupts. 
Clear ICON.gie. 
global_interrupt_enable = false;
break;
case 1: # Enable interrupts. Set
ICON.gie. 
        global_interrupt_enable = 
true;break;
case 2: # Use the current 
interrupt enable state. 
break;

The pseudocode now correctly 
reads as shown.
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Example: # ICON.gie = 0, g0 = 1, Interrupts disabled.
halt g0 # Enable interrupts and halt.

Opcode: halt 65DH REG

Notes: This instruction is implemented on the 80960Jx processor family only, and
may or may not be implemented on future i960 processors.
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6.2.33 icctl (80960Jx-Specific Instruction)

Mnemonic: icctl Instruction-cache Control

Format: icctl src1, src2, src/dst
reg/lit reg/lit reg

Description: Performs management and control of the instruction cache including
disabling, enabling, invalidating, loading and locking, getting status, and
storing cache sets to memory. Operations are indicated by the value of src1.
Some operations also use src2 and src/dst. When needed by the operation, the
processor orders the effects of the operation with previous and subsequent
operations to ensure correct behavior. For specific function setup, see the
following tables and diagrams:

Table 6-10.  ICCTL Operand Fields

Function src1 src2 src/dst

Disable Icache 0 NA NA

Enable Icache 1 NA NA

Invalidate Icache 2 NA NA

Load and lock 
Icache

3
src: Starting 
address of code 
to lock.

Number of blocks 
to lock.

Get Icache status 4 NA
dst: Receives 
status (see 
Figure 6-3).

Get Icache 
locking status

5 NA
dst: Receives 
status (see 
Figure 6-3)

Store Icache sets 
to memory

6
Destination 
address for  cache 
sets

src: Icache set 
#’s to be stored 
(see Figure 6-3).
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Figure 6-3.  ICCTL Src1 and Src/Dst Formats
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Function Type

Src1 Format
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Src/Dst Format for Icache Status
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Enabled = 1
Disabled = 0

log2 (# of Sets)

# of Ways-1
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Src/Dst Format for Icache Locking Status

24   23

# of Blocks that Lock Block Size in Words

031

Src/Dst Format for Store Icache Sets to Memory

16   15

Starting Set #Ending Set #

# of Blocks that are Locked

Reserved, 
(Initialize to 0)

log2 (Atoms/Line)
log2 (Bytes/Atom)
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Table 6-11.  ICCTL Status Values and Instruction Cache Parameters

Value
Value on 

i960JA CPU
Value on i960JD/JF 

CPU

bytes per atom 4 4

atoms per line 4 4

number of sets 64 128 

number of ways 2 1 (Direct)

cache size 2-Kbytes 4-Kbytes 

Status[0] (enable / disable) 0 or 1 0 or 1

Status[1:3] (reserved) 0 0

Status[7:4] (log2(bytes per 
atom))

2 2

Status[11:8] (log2(atoms 
per line))

2 2

Status[15:12] 
(log2(number of sets))

6 7 

Status[27:16] (number of 
ways - 1)

1 1

Lock Status[7:0] (number 
of blocks that lock)

1 1

Lock Status[23:8] (block 
size in words)

256 512 

Lock Status[31:24] 
(number of blocks that are 
locked)

0 or 1 0 or 1
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Figure 6-4.  Store Instruction Cache to Memory Output Format

Table 6-12.  Valid_Bits Value For i960Jx Processor

Bit Meaning

0 Tag Valid bit for current Set and Way

1 Valid Bit for Word 0 of current Set and Way

2 Valid Bit for Word 1 of current Set and Way

3 Valid Bit for Word 2 of current Set and Way

4 Valid Bit for Word 3 of current Set and Way

5-31 Reserved, Read as Zero. 

  Set_Data [Starting Set]
Destination 
Address (DA)

Tag (Starting set) DA + 4H

Valid Bits (Starting set) DA + 8H

Word 0 DA + CH

Word 1 DA + 10H

Word 2 DA + 14H

Word 3 DA + 18H

Tag (Starting set) DA + 1CH

Valid Bits (Starting set) DA + 20H

Word 0 DA + 24H

Word 1 DA + 28H

Word 2 DA + 2CH

Word 3 DA + 30H

Set_Data [Starting Set + 1] DA + 34H

Tag (Starting set + 1) DA + 38H

Valid Bits (Starting set + 1) DA + 3CH

. . . . . .

W
ay

 0
W

ay
 1

W
ay

 0
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Action: if (PC.em != supervisor) 
generate_fault(TYPE.MISMATCH);

switch (src1[7:0]) {
case 0: # Disable instruction cache. 

disable_instruction_cache( );
break;

case 1: # Enable instruction cache. 
enable_instruction_cache( );
break;

case 2: # Globally invalidate instruction cache.
# Includes locked lines also.
invalidate_instruction_cache( );
unlock_icache( );
break;

case 3: # Load & Lock code into Instruction-Cache
# src/dest has number of contiguous blocks to lock
# src2 has starting address of code to lock. 
# On the i960Jx, src2 is aligned to a quadword boundary

aligned_addr = src2 & 0xfffffff0;
invalidate(I-cache); unlock(I-cache);
for (j = 0; j < src/dest; j++)

{ way = way_associated_with_block(j);
start = src2 + j*block_size;
end = start + block_size;
for (i = start; i < end; i=i+4)

{ set = set_associated_with(i);
word = word_associated_with(i);
Icache_line[set][way][word] =

 memory[i];
update_tag_n_valid_bits(set,way,word)

  lock_icache(set,way,word);
} } break;

Table 6-13.  Set_Data I-Cache Values

Set_Data[set] 
I-Cache Value

Meaning

0 I-Cache Way 0 is LRU for the set.

1 I-Cache Way 1 is LRU for the set.

x Other values are reserved
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Action: case 4: # Get instruction cache status into src/dst. 
if (Icache_enabled) src/dst[0] = 1;

else src/dst[0] = 0;
# Atom is 4 bytes. 
   src/dst[7:4] = log2(bytes per atom);
# 4 atoms per line. 
   src/dst[11:8] = log2(atoms per line);
src/dst[15:12] = log2(number of sets);
src/dst[27:16] = number of ways-1; #in lines per set
# cache size = ([27:16]+1) << ([7:4] + [11:8] + [15:12]) 
break;

case 5: # Get instruction cache locking status into dst. 
src/dst[7:0] = number_of_blocks_that_lock;
src/dst[23:8] = block_size_in_words;
src/dst[31:24] = number_of_blocks_that_are_locked;
break;

case 6: # Store instr cache sets to memory pointed to by src2.   
start = src/dst[15:0] # Starting set number    
end   = src/dst[31:16] # Ending set number 

# (zero-origin).
if (end >= Icache_max_sets) 

end = Icache_max_sets - 1;
if (start > end) 

generate_fault(OPERATION.INVALID_OPERAND);
memadr = src2; # Must be word-aligned.
if(0x3 & memadr != 0)

generate_fault(OPERATION.INVALID_OPERAND);
for (set = start; set <= end; set++){

 # Set_Data is described at end of this code flow. 
 memory[memadr] = Set_Data[set];
 memadr += 4;
 for (way = 0; way < numb_ways; way++)

{memory[memadr] = tags[set][way];
 memadr += 4;
 memory[memadr] = valid_bits[set][way];
 memadr += 4;
 for (word = 0; word < words_in_line;

 word++)
 {memory[memadr] =

 Icache_line[set][way][word];
  memadr += 4;
 } 

} } break;
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default: # Reserved. 
generate_fault(OPERATION.INVALID_OPERAND);
break;}

Faults: STANDARD Refer to section 6.1.6, “Faults”
(pg. 6-6).

TYPE.MISMATCH Attempt to execute instruction
while not in supervisor mode.

OPERATION.INVALID_OPERAND

Example: # g0 = 3, g1=0x10000000, g2=1
icctl g0,g1,g2 # Load and lock 1 block of cache

# (one way) with
# location of code at starting
# 0x10000000.

Opcode: icctl 65BH REG  

See Also: sysctl

Notes: This instruction is implemented on the 80960Jx processor family only, and
may or may not be implemented on future i960 processors.
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6.2.34 intctl (80960Jx-Specific Instruction)

Mnemonic: intctl Global Enable and Disable of Interrupts

Format: intctl src1 dst
reg/lit reg

Description: Globally enables, disables or returns the current status of interrupts
depending on the value of src1. Returns the previous interrupt enable state (1
for enabled or 0 for disabled) in dst. When the state of the global interrupt
enable is changed, the processor ensures that the new state is in full effect
before the instruction completes. (This instruction is implemented by manip-
ulating ICON.gie.)

Action: if (PC.em != supervisor) 
generate_fault(TYPE.MISMATCH);

old_interrupt_enable = global_interrupt_enable;
switch(src1) {

case 0: # Disable. Set ICON.gie to one.
globally_disable_interrupts;
global_interrupt_enable = false;
order_wrt(subsequent_instructions);
break;

case 1: # Enable.  Clear ICON.gie to zero.
globally_enable_interrupts;
global_interrupt_enable = true;
order_wrt(subsequent_instructions);
break;

   case 2: # Return status. Return ICON.gie 
break;

default:
generate_fault(OPERATION.INVALID_OPERAND);
break;

}
if(old_interrupt_enable)

dst = 1;
else

dst = 0;

src1 Value Operation

0 Disables interrupts

1 Enables interrupts

2 Returns current interrupt enable status
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Faults: STANDARD Refer to section 6.1.6, “Faults”
(pg. 6-6).

OPERATION.INVALID_OPERAND
TYPE.MISMATCH

Example: # ICON.gie = 0, interrupts enabled
intctl 0, g4 # Disable interrupts (ICON.gie = 1)

# g4 = 1

Opcode: intctl 658H REG

See Also: intdis, inten

Notes: This instruction is implemented on the 80960Jx processor family only, and
may or may not be implemented on future i960 processors.
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6.2.35 intdis (80960Jx-Specific Instruction)

Mnemonic: intdis Global Interrupt Disable

Format: intdis

Description: Globally disables interrupts and ensures that the change takes effect before
the instruction completes. This operation is implemented by setting
ICON.gie to one.

Action: if (PC.em != supervisor) 
generate_fault(TYPE.MISMATCH);

# Implemented by setting ICON.gie to one. 
globally_disable_interrupts;
interrupt_enable = false;
order_wrt(subsequent_instructions);

Faults: STANDARD Refer to section 6.1.6, “Faults” (pg. 6-6).
TYPE.MISMATCH

Example: # ICON.gie = 0, interrupts enabled
intdis # Disable interrupts. 

# ICON.gie = 1

Opcode: intdis 5B4H REG

See Also: intctl, inten

Notes: This instruction is implemented on the 80960Jx processor family only, and
may or may not be implemented on future i960 processors.
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6.2.36 inten (80960Jx-Specific Instruction)

Mnemonic: inten global interrupt enable

Format: inten

Description: Globally enables interrupts and ensures that the change takes effect before the
instruction completes. This operation is implemented by clearing ICON.gie to
zero.

Action: if (PC.em != supervisor) 
generate_fault(TYPE.MISMATCH);

# Implemented by clearing ICON.gie to zero. 
globally_enable_interrupts;
interrupt_enable = true;
order_wrt(subsequent_instructions);

Faults: TYPE.MISMATCH

Example: # ICON.gie = 1, interrupts disabled.
inten # Enable interrupts.  

# ICON.gie = 0

Opcode: inten 5B5H REG

See Also: intctl, intdis

Notes: This instruction is implemented on the 80960Jx processor family only, and
may or may not be implemented on future i960 processors.
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6.2.37 LOAD
Mnemonic: ld Load

ldob Load Ordinal Byte
ldos Load Ordinal Short
ldib Load Integer Byte
ldis Load Integer Short
ldl Load Long
ldt Load Triple
ldq Load Quad

Format: ld*  src dst
mem reg

Description: Copies byte or byte string from memory into a register or group of successive
registers.

The src operand specifies the address of first byte to be loaded. The full range
of addressing modes may be used in specifying src. 

Refer to Chapter 2, DATA TYPES AND MEMORY ADDRESSING
MODES for more information.

dst specifies a register or the first (lowest numbered) register of successive
registers.

ldob and ldib load a byte and ldos and ldis load a half word and convert it to
a full 32-bit word. Data being loaded is sign-extended during integer loads
and zero-extended during ordinal loads.

ld, ldl, ldt and ldq instructions copy 4, 8, 12 and 16 bytes, respectively, from
memory into successive registers.

For ldl, dst must specify an even numbered register (i.e., g0, g2...). For ldt
and ldq, dst must specify a register number that is a multiple of four (i.e., g0,
g4, g8, g12, r4, r8, r12). Results are unpredictable  if data extends beyond
register g15 or r15 for ldl, ldt or ldq.

Action: ld:
dst = read_memory(effective_address)[31:0];
if((effective_address[1:0] != 002 ) && unaligned _fault_enabled)

generate_fault(OPERATION.UNALIGNED);

ldob:
dst[7:0] = read_memory(effective_address)[7:0];
dst[31:8] = 0x000000;
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ldib:
dst[7:0] = read_memory(effective_address)[7:0];
if(dst[7] == 0)

dst[31:8] = 0x000000;
else

dst[31:8] = 0xFFFFFF;

ldos:
dst = read_memory(effective_address)[15:0];

# Order depends on endianism. See 
# section 2.2.2, “Byte Ordering” (pg. 2-4)

dst[31:16] = 0x0000;
if((effective_address[0] != 02) && unaligned_fault_enabled)

generate_fault(OPERATION.UNALIGNED);

ldis:
dst[15:0] = read_memory(effective_address)[15:0];

# Order depends on endianism. See
# section 2.2.2, “Byte Ordering” (pg. 2-4)

if(dst[15] == 02)
dst[31:16] = 0x0000;

else
dst[31:16] = 0xFFFF;

if((effective_address[0] != 02) && unaligned_fault_enabled)
generate_fault(OPERATION.UNALIGNED);

ldl:
if((reg_number(dst) % 2) != 0)

generate_fault(OPERATION.INVALID_OPERAND);
# dst not modified.

else
{ dst = read_memory(effective_address)[31:0];

dst_+_1 = read_memory(effective_address_+_4)[31:0];
if((effective_address[2:0] != 0002) && unaligned_fault_enabled)

generate_fault(OPERATION.UNALIGNED);
}

ldt:
if((reg_number(dst) % 4) != 0)

generate_fault(OPERATION.INVALID_OPERAND);
# dst not modified.

else
{ dst = read_memory(effective_adddress)[31:0];

dst_+_1 = read_memory(effective_adddress_+_4)[31:0];
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dst_+_2 = read_memory(effective_adddress_+_8)[31:0];
if((effective_address[3:0] != 00002) && unaligned_fault_enabled)

generate_fault(OPERATION.UNALIGNED);
}

ldq:
if((reg_number(dst) % 4) != 0)

generate_fault(OPERATION.INVALID_OPERAND);
# dst not modified.

else
{ dst = read_memory(effective_adddress)[31:0];

# Order depends on endianism. 
# See section 2.2.2, “Byte Ordering” (pg. 2-4)

dst_+_1 = read_memory(effective_adddress_+_4)[31:0];
dst_+_2 = read_memory(effective_adddress_+_8)[31:0];
dst_+_3 = read_memory(effective_adddress_+_12)[31:0];
if((effective_address[3:0] != 00002) && unaligned_fault_enabled)

generate_fault(OPERATION.UNALIGNED);
}

Faults: OPERATION.UNALIGNED
STANDARD Refer to section 6.1.6, “Faults” (pg. 6-6).

Example: ldl 2450 (r3), r10 # r10, r11 = r3 + 2450 in
# memory

Opcode: ld 90H MEM
ldob 80H MEM
ldos 88H MEM
ldib C0H MEM
ldis C8H MEM
ldl 98H MEM
ldt A0H MEM
ldq B0H MEM

See Also: MOVE, STORE
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6.2.38 lda
Mnemonic: lda Load Address

Format: lda src, dst
mem reg
efa

Description: Computes the effective address specified with src and stores it in dst. The src
address is not checked for validity. Any addressing mode may be used to
calculate efa. 

An important application of this instruction is to load a constant longer than 5
bits into a register. (To load a register with a constant of 5 bits or less, mov
can be used with a literal as the src operand.) 

Action: dst = effective_address;

Faults: STANDARD Refer to section 6.1.6, “Faults” (pg. 6-6).

Example: lda 58 (g9), g1 # g1 = g9+58
lda 0x749, r8 # r8 = 0x749

Opcode: lda 8CH MEM
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6.2.39 mark
Mnemonic: mark Mark

Format: mark

Description: Generates mark trace fault if mark trace mode is enabled. Mark trace mode is
enabled if the PC register trace enable bit (bit 0) and the TC register mark
trace mode bit (bit 7) are set.

If mark trace mode is not enabled, mark behaves like a no-op.

For more information on trace fault generation, refer to CHAPTER 10,
TRACING AND DEBUGGING.

Action: if(PC.te && TC.mk)
generate_fault(TRACE.MARK)

Faults: STANDARD Refer to section 6.1.6, “Faults” (pg. 6-6).
TRACE.MARK Trace fault is generated if PC.te=1 and

TC.mk=1.

Example: # Assume that the mark trace mode is enabled.
ld xyz, r4
addi r4, r5, r6
mark
# Mark trace event is generated at this point in the
# instruction stream.

Opcode: mark 66BH REG

See Also: fmark, modpc, modtc 
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6.2.40 modac
Mnemonic: modac Modify AC

Format: modac mask, src, dst
reg/lit reg/lit reg

Description: Reads and modifies the AC register. src contains the value to be placed in the
AC register; mask specifies bits that may be changed. Only bits set in mask
are modified. Once the AC register is changed, its initial state is copied into
dst. 

Action: temp = AC;
AC = (src & mask) | (AC & ~mask);
dst = temp;

Faults: STANDARD Refer to section 6.1.6, “Faults” (pg. 6-6).

Example: modac g1, g9, g12 # AC = g9, masked by g1.
# g12 = initial value of AC. 

Opcode: modac 645H REG

See Also: modpc, modtc

Side Effects: Sets the condition code in the arithmetic controls. 
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6.2.41 modi
Mnemonic: modi Modulo Integer

Format: modi src1, src2, dst
reg/lit reg/lit reg

Description: Divides src2 by src1, where both are integers and stores the modulo
remainder of the result in dst. If the result is nonzero, dst has the same sign as
src1.

Action: if(src1 == 0)
generate_fault(ARITHMETIC.ZERO_DIVIDE);
dst = undefined.value

dst = src2 - (src2/src1) * src1;
if((src2 *src1 < 0 ) && (dst != 0))

dst = dst + src1;

Faults: ARITHMETIC.ZERO_DIVIDE The src1 operand is zero.
STANDARD Refer to section 6.1.6,

“Faults” (pg. 6-6).

Example: modi r9, r2, r5 # r5 = modulo (r2/r9)

Opcode: modi 749H REG

See Also: divi, divo, remi, remo

Notes: modi generates the correct result (0) when computing -231 mod -1, although
the corresponding 32 bit division would overflow.
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6.2.42 modify
Mnemonic: modify Modify

Format: modify mask, src, src/dst
reg/lit reg/lit reg

Description: Modifies selected bits in src/dst with bits from src. The mask operand selects
the bits to be modified: only bits set in the mask operand are modified in
src/dst.

Action: src/dst = (src & mask) | (src/dst & ~mask);

Faults: STANDARD Refer to section 6.1.6, “Faults” (pg. 6-6).

Example: modify g8, g10, r4 # r4 = g10 masked by g8.

Opcode: modify 650H REG

See Also: alterbit, extract
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6.2.43 modpc
Mnemonic: modpc Modify Process Controls

Format: modpc src, mask, src/dst
reg/lit reg/lit reg

Description: Reads and modifies the PC register as specified with mask and src/dst. src/dst
operand contains the value to be placed in the PC register; mask operand
specifies bits that may be changed. Only bits set in the mask are modified.
Once the PC register is changed, its initial value is copied into src/dst. The
src operand is a dummy operand that should specify a literal or the same
register as the mask operand.

The processor must be in supervisor mode to use this instruction with a non-
zero mask value. If mask=0, this instruction can be used to read the process
controls, without the processor being in supervisor mode.

Changing the PC register reserved fields can lead to unpredictable behavior
as described in section 3.6.3, “Process Controls (PC) Register” (pg. 3-20).

Action: if(mask != 0)
{ if(PC.em != 1)

generate_fault(TYPE.MISMATCH);
temp = PC;
PC = (mask & src_dst) | (PC & ~mask);
src_dst = temp;
if(temp.priority > PC.priority)

check_pending_interrupts;
}
else

src_dst = PC;

Faults: STANDARD Refer to section 6.1.6, “Faults” (pg. 6-6).
TYPE.MISMATCH

Example: modpc g9, g9, g8 # process controls = g8
# masked by g9.

Opcode: modpc 655H REG

See Also: modac, modtc

Notes: Since modpc does not switch stacks, it should not be used to switch the
mode of execution from supervisor to user (the supervisor stack can get cor-
rupted in this case). The call and return mechanism should be used instead. 
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6.2.44 modtc
Mnemonic: modtc Modify Trace Controls

Format: modtc mask, src2, dst
reg/lit reg/lit reg

Description: Reads and modifies TC register as specified with mask and src2. The src2
operand contains the value to be placed in the TC register; mask operand
specifies bits that may be changed. Only bits set in mask are modified. mask
must not enable modification of reserved bits. Once the TC register is
changed, its initial state is copied into dst.

The changed trace controls may take effect immediately or may be delayed. If
delayed, the changed trace controls may not take effect until after the first
non-branching instruction is fetched from memory or after four non-
branching instructions are executed.

For more information on the trace controls, refer to CHAPTER 9, FAULTS
and CHAPTER 10, TRACING AND DEBUGGING.

Action: temp = TC;
tempa = 0x00FF00FF & mask;
TC = (tempa & src2) | (TC & ~tempa);
dst = temp;

Faults: STANDARD Refer to section 6.1.6, “Faults” (pg. 6-6).

Example: modtc g12, g10, g2 # trace controls = g10 masked
# by g12; previous trace
# controls stored in g2.

Opcode: modtc 654H REG

See Also: modac, modpc
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6.2.45 MOVE
Mnemonic: mov Move

movl Move Long
movt Move Triple
movq Move Quad

Format: mov* src1, dst
reg/lit reg

Description: Copies the contents of one or more source registers (specified with src) to
one or more destination registers (specified with dst).

For movl, movt and movq, src1 and dst specify the first (lowest numbered)
register of several successive registers. src1 and dst registers must be even
numbered (e.g., g0, g2, ... or r4, r6, ...) for movl and an integral multiple of
four (e.g., g0, g4, ... or r4, r8, ...) for movt and movq.

The moved register values are unpredictable when: 1) the src and dst
operands overlap; 2) registers are not properly aligned.

Action: mov:
if(is_reg(src1))

dst = src1;
else
{ dst[5:0] = src1; #src1 is a 5-bit literal.

dst[31:5] = 0;
}
movl:
if((reg_num(src1)%2 != 0) || (reg_num(dst)%2 != 0))
{ dst = undefined_value;

dst_+_1 = undefined_value;
generate_fault(OPERATION.INVALID_OPERAND);

}
else if(is_reg(src1))
{ dst = src1;

dst_+_1 = src1_+_1;
}
else
{ dst[4:0] = src1; #src1 is a 5-bit literal.

dst[31:5] = 0;
dst_+_1[31:0] = 0;

}



INSTRUCTION SET REFERENCE

6-81

6

movt:
if((reg_num(src1)%4 != 0) || (reg_num(dst)%4 != 0))
{ dst = undefined_value;

dst_+_1 = undefined_value;
dst_+_2 = undefined_value;
generate_fault(OPERATION.INVALID_OPERAND);

}
else if(is_reg(src1))
{ dst = src1;

dst_+_1 = src1_+_1;
dst_+_2 = src1_+_2;

}
else
{ dst[4:0] = src1; #src1 is a 5-bit literal.

dst[31:5] = 0;
dst_+_1[31:0] = 0;
dst_+_2[31:0] = 0;

}
movq:
if((reg_num(src1)%4 != 0) || (reg_num(dst)%4 != 0))
{ dst = undefined_value;

dst_+_1 = undefined_value;
dst_+_2 = undefined_value;
dst_+_3 = undefined_value;
generate_fault(OPERATION.INVALID_OPERAND);

}
else if(is_reg(src1))
{ dst = src1;

dst_+_1 = src1_+_1;
dst_+_2 = src1_+_2;
dst_+_3 = src1_+_3;

}
else
{ dst[4:0] = src1; #src1 is a 5 bit literal.

dst[31:5] = 0;
dst_+_1[31:0] = 0;
dst_+_2[31:0] = 0;
dst_+_3[31:0] = 0;

}

Faults: STANDARD Refer to section 6.1.6, “Faults”
(pg. 6-6).

OPERATION.INVALID_OPERAND
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Example: movt g8, r4 # r4, r5, r6 = g8, g9, g10

Opcode: mov 5CCH REG
movl 5DCH REG
movt 5ECH REG
movq 5FCH REG

See Also: LOAD, STORE, lda 
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6.2.46 muli, mulo
Mnemonic: muli Multiply Integer

mulo Multiply Ordinal

Format: mul* src1, src2, dst
reg/lit reg/lit reg

Description: Multiplies the src2 value by the src1 value and stores the result in dst. The
binary results from these two instructions are identical. The only difference is
that muli can signal an integer overflow.

Action: mulo:
dst = (src2 * src1)[31:0];

muli:
dst = (src2 * src1)[31:0];
if((src2[31] == src1[31]) && (src2[31] != dst[31]))
{ if(AC.om == 1)

AC.of = 1;
else

generate_fault(ARITHMETIC.OVERFLOW);
}

Faults: STANDARD Refer to section 6.1.6, “Faults” (pg. 6-6).
ARITHMETIC.OVERFLOW. Result is too large for destination register

(muli only). If a condition of overflow
occurs, the least significant 32 bits of the
result are stored in the destination register.

Example: muli r3, r4, r9 # r9 = r4 * r3

Opcode: muli 741H REG
mulo 701H REG

See Also: emul, ediv, divi, divo
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6.2.47 nand
Mnemonic: nand Nand

Format: nand src1, src2, dst
reg/lit reg/lit reg

Description: Performs a bitwise NAND operation on src2 and src1 values and stores the
result in dst.

Action: dst = ~src2 | ~src1;

Faults: STANDARD Refer to section 6.1.6, “Faults” (pg. 6-6).

Example: nand g5, r3, r7 # r7 = r3 NAND g5

Opcode: nand 58EH REG

See Also: and, andnot, nor, not, notand, notor, or, ornot, xnor, xor
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6.2.48 nor
Mnemonic: nor Nor

Format: nor src1, src2, dst
reg/lit reg/lit reg

Description: Performs a bitwise NOR operation on the src2 and src1 values and stores the
result in dst.

Action: dst = ~src2 & ~src1;

Faults: STANDARD Refer to section 6.1.6, “Faults” (pg. 6-6).

Example: nor g8, 28, r5 # r5 = 28 NOR g8

Opcode: nor 588H REG

See Also: and, andnot, nand, not, notand, notor, or, ornot, xnor, xor
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6.2.49 not, notand
Mnemonic: not Not

notand Not And

Format: not src, dst
reg/lit reg

notand src1, src2, dst
reg/lit reg/lit reg

Description: Performs a bitwise NOT (not instruction) or NOT AND (notand instruction)
operation on the src2 and src1 values and stores the result in dst.

Action: not:
dst = ~src1;

notand:
dst = ~src2 & src1;

Faults: STANDARD Refer to section 6.1.6, “Faults” (pg. 6-6).

Example: not g2, g4 # g4 = NOT g2
notand r5, r6, r7 # r7 =  NOT r6 AND r5 

Opcode: not 58AH REG
notand 584H REG

See Also: and, andnot, nand, nor, notor, or, ornot, xnor, xor
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6.2.50 notbit
Mnemonic: notbit Not Bit

Format: notbit bitpos, src2, dst
reg/lit reg/lit reg

Description: Copies the src2 value to dst with one bit toggled. The bitpos operand specifies
the bit to be toggled. 

Action: dst = src2 ^ 2**(src1%32);

Faults: STANDARD Refer to section 6.1.6, “Faults” (pg. 6-6).

Example: notbit r3, r12, r7 # r7 = r12 with the bit
# specified in r3 toggled.

Opcode: notbit 580H REG

See Also: alterbit, chkbit, clrbit, setbit
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6.2.51 notor
Mnemonic: notor Not Or

Format: notor src1, src2, dst
reg/lit reg/lit reg

Description: Performs a bitwise NOTOR operation on src2 and src1 values and stores
result in dst.

Action: dst = ~(src2) | src1;

Faults: STANDARD Refer to section 6.1.6, “Faults” (pg. 6-6).

Example: notor g12, g3, g6 # g6 = NOT g3 OR g12

Opcode: notor 58DH REG

See Also: and, andnot, nand, nor, not, notand, or, ornot, xnor, xor
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6.2.52 or, ornot
Mnemonic: or Or

ornot Or Not

Format: or src1, src2, dst
reg/lit reg/lit reg

ornot src1, src2, dst
reg/lit reg/lit reg

Description: Performs a bitwise OR (or instruction) or ORNOT (ornot instruction)
operation on the src2 and src1 values and stores the result in dst.

Action: or:
dst = src2 | src1;

ornot:
dst = src2 | ~(src1);

Faults: STANDARD Refer to section 6.1.6, “Faults” (pg. 6-6).

Example: or 14, g9, g3 # g3 = g9 OR 14
ornot r3, r8, r11 # r11 = r8 OR NOT r3

Opcode: or 587H REG
ornot 58BH REG

See Also: and, andnot, nand, nor, not, notand, notor, xnor, xor
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6.2.53 remi, remo
Mnemonic: remi Remainder Integer

remo Remainder Ordinal

Format: rem* src1, src2, dst
reg/lit reg/lit reg

Description: Divides src2 by src1 and stores the remainder in dst. The sign of the result (if
nonzero) is the same as the sign of src2.

Action: remi, remo:
if(src1 == 0)

generate_fault(ARITHMETIC.ZERO_DIVIDE);
dst = src2 - (src1/src2)*src1;

Faults: ARITHMETIC.ZERO_DIVIDE The src1 operand is 0.
ARITHMETIC.INTEGER_OVERFLOW The result is too large for

destination register (remi
only). If overflow occurs and
AC.om=1, the fault is
suppressed and AC.of is set to
1. The least significant 32 bits
of the result are stored in dst.

Example: remo r4, r5, r6 # r6 = r5 rem r4

Opcode: remi 748H REG
remo 708H REG

See Also: modi

Notes: remi produces the correct result (0) even when computing -231 remi -1,
which would cause the corresponding division to overflow.
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6.2.54 ret
Mnemonic: ret Return

Format: ret

Description: Returns program control to the calling procedure. The current stack frame
(i.e., that of the called procedure) is deallocated and the FP is changed to
point to the calling procedure’s stack frame. Instruction execution is
continued at the instruction pointed to by the RIP in the calling procedure’s
stack frame, which is the instruction immediately following the call
instruction.

As shown in the action statement below, the return-status field and prereturn-
trace flag determine the action that the processor takes on the return. These
fields are contained in bits 0 through 3 of register r0 of the called procedure’s
local registers.

See section CHAPTER 7, “PROCEDURE CALLS” (pg. 7-1) for more on ret.

Action: implicit_syncf();
if(pfp.p && PC.te && TC.p)
{ pfp.p = 0;

generate_fault(TRACE.PRERETURN);
}
switch(return_status_field)
{

case 0002: #local return
get_FP_and_IP();
break;

case 0012: #fault return
tempa = memory(FP-16);
tempb = memory(FP-12);
get_FP_and_IP();
AC = tempb;
if(execution_mode == supervisor)

PC = tempa;
break;

case 0102: #supervisor return, trace on return disabled
if(execution_mode != supervisor)

get_FP_and_IP();
else
{ PC.te = 0;

execution_mode = user;
get_FP_and_IP();

}
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break;
case 0112: # supervisor return, trace on return enabled

if(execution_mode != supervisor)
get_FP_and_IP();

else
{ PC.te = 1;

execution_mode = user;
get_FP_and_IP();

}
break;

case 1002: #reserved -  unpredictable behavior
break;

case 1012: #reserved -  unpredictable behavior
break;

case 1102: #reserved -  unpredictable behavior
break;

case 1112: #interrupt return
tempa = memory(FP-16);
tempb = memory(FP-12);
get_FP_and_IP();
AC = tempb;
if(execution_mode == supervisor)

PC = tempa;
check_pending_interrupts();
break;

}

get_FP_and_IP()
{ FP =PFP;

free(current_register_set);
if(not_allocated(FP))

retrieve_from_memory(FP);
IP = RIP;

}

Faults:  STANDARD Refer to section 6.1.6, “Faults” (pg.
6-6).

OPERATION.UNIMPLEMENTED
TRACE.PRERETURN

Example: ret # Program control returns to context of
# calling procedure.

Opcode: ret 0AH CTRL

See Also: call, calls, callx
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6.2.55 rotate
Mnemonic: rotate Rotate

Format: rotate len, src2, dst
reg/lit reg/lit reg

Description: Copies src2 to dst and rotates the bits in the resulting dst operand to the left
(toward higher significance). Bits shifted off left end of word are inserted at
right end of word. The len operand specifies number of bits that the dst
operand is rotated.

This instruction can also be used to rotate bits to the right. The number of bits
the word is to be rotated right should be subtracted from 32 and the result
used as the len operand. 

Action: src2 is rotated by len mod 32. This value is stored in dst.

Faults:  STANDARD Refer to section 6.1.6, “Faults” (pg. 6-6).

Example: rotate 13, r8, r12 # r12 = r8 with bits rotated
# 13 bits to left.

Opcode: rotate 59DH REG

See Also: SHIFT, eshro
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6.2.56 scanbit
Mnemonic: scanbit Scan For Bit

Format: scanbit src1, dst
reg/lit reg

Description: Searches src1 for a set bit (1 bit). If a set bit is found, the bit number of the
most significant set bit is stored in the dst and the condition code is set to
0002.  If src value is zero, all 1’s are stored in dst and condition code is set to
0002.

Action: dst = 0xFFFFFFFF;
AC.cc = 0002;
for(i = 31; i >= 0; i--)
{ if((src1 & 2**i) != 0)
{ dst = i;

AC.cc = 0102;
break;

}

}

Faults:  STANDARD Refer to section 6.1.6, “Faults” (pg. 6-6).

Example: # assume g8 is nonzero
scanbit g8, g10 # g10 = bit number of most-

# significant set bit in g8;
# AC.cc = 0102.

Opcode: scanbit 641H REG

See Also: spanbit, setbit

Side Effects: Sets the condition code in the arthimetic controls.
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6.2.57 scanbyte
Mnemonic: scanbyte Scan Byte Equal

Format: scanbyte src1, src2
reg/lit reg/lit

Description: Performs byte-by-byte comparison of src1 and src2 and sets condition code to
0102 if any two corresponding bytes are equal. If no corresponding bytes are
equal, condition code is set to 0002.

Action: if((src1 & 0x000000FF) == (src2 & 0x000000FF)
|| (src1 & 0x0000FF00) == (src2 & 0x0000FF00)
|| (src1 & 0x00FF0000) == (src2 & 0x00FF0000)
|| (src1 & 0xFF000000) == (src2 & 0xFF000000))

AC.cc = 0102;
else

AC.cc = 0002;

Faults:  STANDARD Refer to section 6.1.6, “Faults” (pg. 6-6).

Example: # Assume r9 = 0x11AB1100
scanbyte 0x00AB0011, r9 # AC.cc = 0102 

Opcode: scanbyte 5ACH REG

See Also: bswap

Side Effects: Sets the condition code in the arthimetic controls.
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6.2.58 SEL<cc> (New 80960 Core Instruction Class)

Mnemonic: selno Select Based on Unordered
selg Select Based on Greater
sele Select Based on Equal
selge Select Based on Greater or Equal
sell Select Based on Less
selne Select Based on Not Equal
selle Select Based on Less or Equal
selo Select Based on Ordered

Format: sel* src1, src2, dst
reg/lit reg/lit reg

Description: Selects either src1 or src2 to be stored in dst based on the condition code bits
in the arithmetic controls. If for Unordered the condition code is 0, or if for
the other cases the logical AND of the condition code and the mask-part of
the opcode is not zero, then the value of src2 is stored in the destination. Else,
the value of src1 is stored in the destination.

Action: if ((mask & AC.cc) || (mask == AC.cc))
dst = src2;

else
dst = src1;

Faults: STANDARD  Refer to section 6.1.6, “Faults” (pg. 6-6).

Instruction MASK Condition

selno 0002 Unordered

selg 0012 Greater 

sele 0102 Equal

selge 0112 Greater  or equal

sell 1002 Less 

selne 1012 Not equal

selle 1102 Less or equal

selo 1112 Ordered
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Example: # AC.cc = 0102
sele g0,g1,g2 # g2 = g1

# AC.cc = 0012
sell g0,g1,g2 # g2 = g0

Opcode: selno 784H REG
selg 794H REG
sele 7A4H REG
selge 7B4H REG
sell 7C4H REG
selne 7D4H REG
selle 7E4H REG
selo 7F4H REG

See Also: MOVE, test, cmpi, cmpo, SUB<cc>

Notes: This core instruction is not implemented on Cx, Kx and Sx 80960 processors.
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6.2.59 setbit
Mnemonic: setbit Set Bit

Format: setbit bitpos, src, dst
reg/lit reg/lit reg

Description: Copies src value to dst with one bit set. bitpos specifies bit to be set.

Action: dst = src2 | (2**(src1%32)); 

Faults: NA

Example: setbit 15, r9, r1 # r1 = r9 with bit 15 set. 

Opcode: setbit 583H REG

See Also: alterbit, chkbit, clrbit, notbit
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6.2.60 SHIFT 
Mnemonic: shlo Shift Left Ordinal

shro Shift Right Ordinal
shli Shift Left Integer
shri Shift Right Integer
shrdi Shift Right Dividing Integer

Format: sh* len, src, dst
reg/lit reg/lit reg

Description: Shifts src left or right by the number of bits indicated with the len operand
and stores the result in dst. Bits shifted beyond register boundary are
discarded. For values of len greater than 32, the processor interprets the value
as 32.

shlo shifts zeros in from the least significant bit; shro shifts zeros in from the
most significant bit. These instructions are equivalent to mulo and divo by the
power of 2, respectively.

shli shifts zeros in from the least significant bit. An overflow fault is
generated if the bits shifted out are not the same as the most significant bit (bit
31). If overflow occurs, dst will equal src shifted left as much as possible
without overflowing.

shri performs a conventional arithmetic shift-right operation by shifting in the
most significant bit (bit 31). When this instruction is used to divide a negative
integer operand by the power of 2, it produces an incorrect quotient
(discarding the bits shifted out has the effect of rounding the result toward
negative).

shrdi is provided for dividing integers by the power of 2. With this
instruction, 1 is added to the result if the bits shifted out are non-zero and the
src operand was negative, which produces the correct result for negative
operands.

shli and shrdi are equivalent to muli and divi by the power of 2.

Action: shlo:
if(src1 < 32)

dst = src2 * (2**src1);
else

dst = 0;
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Action: shro:
if(src1 < 32)

dst = src2 / (2**src1);
else

dst = 0;

shli:
if(src1 > 32)

count = 32;
else

count = src1;
temp = src2;
while((temp[31] == temp[30]) && (count > 0))
{ temp = (temp * 2)[31:0];

count = count - 1;
}
dst = temp;
if(count > 0)
{ if(AC.cc == 1)

AC.of = 1;
else

generate_fault(ARITHMETIC.OVERFLOW);
}

shri:
if(src1 > 32)

count = 32;
else

count = src1;
temp = src2;
while(count > 0)
{ temp = (temp >> 1)[31:0];

temp[31] = src2[31];
count = count - 1;

}
dst = temp;

shrdi:
dst = src2 / (2**src1);

Faults: ARITHMETIC.OVERFLOW For shli

Example: shli 13, g4, r6 # g6 = g4 shifted left 13 bits.
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Opcode: shlo 59CH REG
shro 598H REG
shli 59EH REG
shri 59BH REG
shrdi 59AH REG

See Also: divi, muli, rotate, eshro

Notes: shli and shrdi are identical to multiplications and divisions for all positive
and negative values of src2. shri is the conventional arithmetic right shift that
does not produce a correct quotient when src2 is negative. 



INSTRUCTION SET REFERENCE

6-102

6.2.61 spanbit
Mnemonic: spanbit Span Over Bit

Format: spanbit src, dst
reg/lit reg

Description: Searches src value for the most significant clear bit (0 bit). If a most
significant 0 bit is found, its bit number is stored in dst and condition code is
set to 0102. If src value is all 1’s, all 1’s are stored in dst and condition code is
set to 0002.

Action: dst = 0xFFFFFFFF;
AC.cc = 0002;
for(i = 32; i > = 0; i--)
{ if((src1 & 2**i) == 0))
{ dst = i;

AC.cc = 0102;
break;

}
}

Faults: NA

Example: # Assume r2 is not 0xffffffff
spanbit r2, r9 # r9 = bit number of most-

# significant clear bit in r2;
# AC.cc = 0102

Opcode: spanbit 640H REG

See Also: scanbit

Side Effects: Sets the condition code in the arithmetic controls.
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6.2.62 STORE
Mnemonic: st Store

stob Store Ordinal Byte
stos Store Ordinal Short
stib Store Integer Byte
stis Store Integer Short
stl Store Long
stt Store Triple
stq Store Quad

Format: st* src1, dst
reg mem

Description: Copies a byte or group of bytes from a register or group of registers to
memory. src specifies a register or the first (lowest numbered) register of
successive registers.

dst specifies the address of the memory location where the byte or first byte or
a group of bytes is to be stored. The full range of addressing modes may be
used in specifying dst. Refer to section 2.3, “MEMORY ADDRESSING
MODES” (pg. 2-6) for a complete discussion.

stob and stib store a byte and stos and stis store a half word from the src
register’s low order bytes. Data for ordinal stores is truncated to fit the
destination width. If the data for integer stores cannot be represented correctly
in the destination width, an Arithmetic Integer Overflow fault is signaled.

st, stl, stt and stq copy 4, 8, 12 and 16 bytes, respectively, from successive
registers to memory.

For stl, src must specify an even numbered register (e.g., g0, g2, ... or r0, r2,
...). For stt and stq, src must specify a register number that is a multiple of
four (e.g., g0, g4, g8, ... or r0, r4, r8, ...).

Action: st:
if (illegal_write_to_on_chip_RAM)

generate_fault(TYPE.MISMATCH);
else if ((effective_address[1:0] != 002) && unaligned_fault_enabled) 

{store_to_memory(effective_address)[31:0]  = src1; 
generate_fault(OPERATION.UNALIGNED);}

else
store_to_memory(effective_address)[31:0] = src1; 
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Action: stob:
if (illegal_write_to_on_chip_RAM_or_MMR)

generate_fault(TYPE.MISMATCH);
else

store_to_memory(effective_address)[7:0] = src1[7:0];

stib:
if (illegal_write_to_on_chip_RAM_or_MMR)

generate_fault(TYPE.MISMATCH);
else if ((src1[31:8] != 0) && (src1[31:8] != 0xFFFFFF)) 

{ store_to_memory(effective_address)[7:0] = src1[7:0];
if (AC.om = 1)

AC.of == 1;
else

generate_fault(ARITHMETIC.OVERFLOW);
}

else
store_to_memory(effective_address)[7:0] = src1[7:0];

end if;

stos:
if (illegal_write_to_on_chip_RAM_or_MMR)

generate_fault(TYPE.MISMATCH);
else if ((effective_address[0] != 02) && unaligned_fault_enabled) 

{ store_to_memory(effective_address)[15:0] = src1[15:0];
generate_fault(OPERATION.UNALIGNED);

}
else

store_to_memory(effective_address)[15:0] = src1[15:0];

stis:
if (illegal_write_to_on_chip_RAM_or_MMR)

generate_fault(TYPE.MISMATCH);
else if ((effective_address[0] != 02) && unaligned_fault_enabled) 

{ store_to_memory(effective_address)[15:0] = src1[15:0];
generate_fault(OPERATION.UNALIGNED);

}
else if ((src1[31:8] != 0) && (src1[31:8] != 0xFFFFFF))

{ store_to_memory(effective_address)[15:0] = src1[15:0];
if (AC.om == 1)
AC.of = 1;

else
generate_fault(ARITHMETIC.OVERFLOW);

}
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else
store_to_memory(effective_address)[15:0] = src1[15:0];

stl:
if (illegal_write_to_on_chip_RAM_or_MMR)

generate_fault(TYPE.MISMATCH);
else if (reg_number(src1) % 2 != 0)

generate_fault(OPERATION.INVALID_OPERAND);
else if ((effective_address[2:0] != 0002) && unaligned_fault_enabled)

{ store_to_memory(effective_address)[31:0] = src1;
store_to_memory(effective_address + 4)[31:0] = src1_+_1;
generate_fault (OPERATION.UNALIGNED);

}
else

{ store_to_memory(effective_address)[31:0] = src1;
store_to_memory(effective_address + 4)[31:0] = src1_+_1;

}

stt:
if (illegal_write_to_on_chip_RAM_or_MMR)

generate_fault(TYPE.MISMATCH);
else if (reg_number(src1) % 4 != 0)

generate_fault(OPERATION.INVALID_OPERAND);
else if ((effective_address[3:0] != 00002) && unaligned_fault_enabled)

{ store_to_memory(effective_address)[31:0] = src1;
store_to_memory(effective_address + 4)[31:0] = src1_+_1;
store_to_memory(effective_address + 8)[31:0] = src1_+_2;
generate_fault (OPERATION.UNALIGNED);

}
else

{ store_to_memory(effective_address)[31:0] = src1;
store_to_memory(effective_address + 4)[31:0] = src1_+_1;
store_to_memory(effective_address + 8)[31:0] = src1_+_2;

}

stq:
if (illegal_write_to_on_chip_RAM_or_MMR)

generate_fault(TYPE.MISMATCH);
else if (reg_number(src1) % 4 != 0)

generate_fault(OPERATION.INVALID_OPERAND);
else if ((effective_address[3:0] != 00002) && unaligned_fault_enabled)

{ store_to_memory(effective_address)[31:0] = src1;
store_to_memory(effective_address + 4)[31:0] = src1_+_1;
store_to_memory(effective_address + 8)[31:0] = src1_+_2;
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store_to_memory(effective_address + 12)[31:0] = src1_+_3;
generate_fault (OPERATION.UNALIGNED);

}
else

{ store_to_memory(effective_address)[31:0] = src1;
store_to_memory(effective_address + 4)[31:0] = src1_+_1;
store_to_memory(effective_address + 8)[31:0] = src1_+_2;
store_to_memory(effective_address + 12)[31:0] = src1_+_3;

}

Faults: TYPE.MISMATCH
OPERATION.UNALIGNED
ARITHMETIC.OVERFLOW For stib, stis.
OPERATION.INVALID_OPERAND

Example: st g2, 1254 (g6) # Word beginning at offset
# 1254 + (g6) = g2.

Opcode: st 92H MEM
stob 82H MEM
stos 8AH MEM
stib C2H MEM
stis CAH MEM
stl 9AH MEM
stt A2H MEM
stq B2H MEM

See Also: LOAD, MOVE

Notes: illegal_write_to_on_chip_RAM is an implementation-dependent mecha-
nism.  The mapping of register bits to memory(efa) depends on the endianism
of the memory region and is implementation-dependent.
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6.2.63 subc
Mnemonic: subc Subtract Ordinal With Carry

Format: subc src1, src2, dst
reg/lit reg/lit reg

Description: Subtracts src1 from src2, then subtracts the opposite of condition code bit 1
(used here as the carry bit) and stores the result in dst. If the ordinal
subtraction results in a carry, condition code bit 1 is set to 1, otherwise it is set
to 0.

This instruction can also be used for integer subtraction. Here, if integer
subtraction results in an overflow, condition code bit 0 is set.

subc does not distinguish between ordinals and integers: it sets condition
code bits 0 and 1 regardless of data type.

Action: dst = (src2 - src1 -1 + AC.cc[1])[31:0];
AC.cc[2:0] = 0002;
if((src2[31] == src1[31]) && (src2[31] != dst[31]))

AC.cc[0] = 1; # Overflow bit.
AC.cc[1] = (src2 - src1 -1 + AC.cc[1])[32]; # Carry out.

Faults: STANDARD  Refer to section 6.1.6, “Faults” (pg. 6-6).

Example: subc g5, g6, g7
# g7 = g6 - g5 - not(condition code bit 1)

Opcode: subc 5B2H REG

See Also: addc, addi, addo, subi, subo

Side Effects: Sets the condition code in the arithmetic controls.
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6.2.64 SUB<cc>  (New 80960 Core Instruction Class)

Mnemonic: subono Subtract Ordinal if Unordered
subog Subtract Ordinal if Greater
suboe Subtract Ordinal if Equal
suboge Subtract Ordinal if Greater or Equal
subol Subtract Ordinal if Less
subone Subtract Ordinal if Not Equal
subole Subtract Ordinal if Less or Equal
suboo Subtract Ordinal if Ordered
subino Subtract Integer if Unordered
subig Subtract Integer if Greater
subie Subtract Integer if Equal
subige Subtract Integer if Greater or Equal
subil Subtract Integer if Less
subine Subtract Integer if Not Equal
subile Subtract Integer if Less or Equal
subio Subtract Integer if Ordered

Format: sub* src1, src2, dst
reg/lit reg/lit reg

Description: Subtracts src1 from src2 conditionally based on the condition code bits in the
arithmetic controls.

If for Unordered the condition code is 0, or if for the other cases the logical
AND of the condition code and the mask-part of the opcode is not zero; then
src1 is subtracted from src2 and the result stored in the destination.

Instruction MASK Condition

subono
subino

0002 Unordered

subog
subig

0012 Greater

suboe
subie

0102 Equal
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Action: SUBO<cc>:
if ((mask & AC.cc) || (mask == AC.cc))

dst = (src2 - src1)[31:0];

SUBI<cc>:
if ((mask & AC.cc) || (mask == AC.cc))

dst = (src2 - src1)[31:0];
if((src2[31] != src1[31]) && (src2[31] != dst[31]))

{ if (AC.om == 1)
AC.of  = 1;

else
generate_fault (ARITHMETIC.OVERFLOW);

}

Faults: STANDARD  Refer to section 6.1.6, “Faults” (pg. 6-6).
ARITHMETIC.OVERFLOW For the SUBI<cc> class. 

Example: # AC.cc = 0102
suboge g0,g1,g2 # g2 = g1 - g0

# AC.cc = 0012
subile g0,g1,g2 # g2 not modified

suboge
subige

0112 Greater or equal

subol
subil

1002 Less

subone
subine

1012 Not equal 

subole
subile

1102 Less or equal

suboo
subio

1112 Ordered

Instruction MASK Condition



INSTRUCTION SET REFERENCE

6-110

Opcode: subono 782H REG
subog 792H REG
suboe 7A2H REG
suboge 7B2H REG
subol 7C2H REG
subone 7D2H REG
subole 7E2H REG
suboo 7F2H REG
subino 783H REG
subig 793H REG
subie 7A3H REG
subige 7B3H REG
subil 7C3H REG
subine 7D3H REG
subile 7E3H REG
subio 7F3H REG

See Also: subc, subi, subo, SEL<cc>, test

Notes: This core instruction is not implemented on Cx, Kx and Sx 80960 processors.
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6.2.65 subi, subo
Mnemonic: subi Subtract Integer

subo Subtract Ordinal

Format: sub* src1, src2, dst
reg/lit reg/lit reg

Description: Subtracts src1 from src2 and stores the result in dst. The binary results from
these two instructions are identical. The only difference is that subi can signal
an integer overflow.

Action: subo:
dst = (src2 - src1)[31:0];

subi:
dst = (src2 - src1)[31:0];
if((src2[31] != src1[31]) && (src2[31] != dst[31]))
{ if(AC.om == 1)

AC.of = 1;
else

generate_fault(ARITHMETIC.OVERFLOW);
}

Faults: ARITHMETIC.OVERFLOW for subi

Example: subi g6, g9, g12 # g12 = g9 - g6

Opcode: subi 593H REG
subo 592H REG

See Also: addi, addo, subc, addc
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6.2.66 syncf
Mnemonic: syncf Synchronize Faults

Format: syncf

Description: Waits for all faults to be generated that are associated with any prior
uncompleted instructions.

Action: if(AC.nif == 1)
break;

else
wait_until_all_previous_instructions_in_flow_have_completed();
# This also means that all of the faults on these instructions have 
# been reported.

Faults: STANDARD  Refer to section 6.1.6, “Faults” (pg. 6-6).

Example: ld xyz, g6
addi r6, r8, r8
syncf
and g6, 0xFFFF, g8
# The syncf instruction ensures that any faults
# that may occur during the execution of the
# ld and addi instructions occur before the
# and instruction is executed.

Opcode: syncf 66FH REG

See Also: mark, fmark
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6.2.67 sysctl
Mnemonic: sysctl System Control

Format: sysctl src1, src2, src/dst
reg/lit reg/lit reg

Description: Performs system management and control operations including requesting
software interrupts, invalidating the instruction cache, configuring the
instruction cache, processor reinitialization, modifying memory-mapped
registers, and acquiring breakpoint resource information. 

Processor control function specified by the message field of src1 is executed.
The type field of src1 is interpreted depending upon the command.
Remaining src1 bits are reserved. The src2 and src3 operands are also
interpreted depending upon the command.

Figure 6-5.  Src1 Operand Interpretation

Table 6-14.  Sysctl Message Types and Operand Fields

Message
Src1 Src2 Src/Dst

Type Field 1 Field 2 Field 3 Field 4

Request Interrupt 0x0 Vector Number N/U N/U N/U

Invalidate Cache 0x1 N/U N/U N/U N/U

Configure 
Instruction Cache

0x2
Cache Mode 
Configuration 

(See Table 6-15)
N/U Cache load 

address N/U

 Reintialize 0x3 N/U N/U Starting IP PRCB Pointer

Modify Memory-
Mapped Control 
Register (MMR)

0x5 N/U
Lower 2 bytes 

of MMR 
address

Value to write Mask

Breakpoint 
Resource Request

0x6 N/U N/U N/U
Break-point 

info (See Figure 
6-6)

Note: Sources and fields that are not used (designated N/U) are ignored.

8    7 031 16   15

Message TypeField 2 Field 1
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Figure 6-6.  Src/dst Interpretation for Breakpoint Resource Request

Action: if (PC.em != supervisor) 
generate_fault(TYPE.MISMATCH);

order_wrt(previous_operations);
OPtype = (src1 & 0xff00) >> 8;
switch (OPtype) {
  case 0: # Signal Software Interrupt

vector_to_post = 0xff & src1;
priority_to_post = vector_to_post >> 3;
pend_ints_addr = interrupt_table_base + 4 + priority_to_post;
pend_priority = memory_read(interrupt_table_base,atomic_lock);
# Priority zero just recans Interrupt Table 
if (priority_to_post != 0)
   {pend_ints = memory_read(pend_ints_addr, non-cacheable)
    pend_ints[7 & vector] = 1;
    pend_priority[priority_to_post] = 1;
    memory_write(pend_ints_addr, pend_ints); }
memory_write(interrupt_table_base,pend_priority,atomic_unlock);
# Update internal software priority with highest priority interrupt
# from newly adjusted Pending Priorities word.  The current internal
# software priority is always replaced by the new, computed one. (If
# there is no bit set in pending_priorities word for the current
# internal one, then it is discarded by this action.)
if (pend_priority == 0)
       SW_Int_Priority = 0;
else { msb_set = scan_bit(pend_priority);
       SW_Int_Priority = msb_set;   }

Table 6-15.  Cache Configuration Modes

Mode Field Mode Description JA JF, JD

0002 Normal cache enabled 2 Kbyte 4 Kbyte

XX12 Full cache disabled 2 Kbyte 4 Kbyte

1002 or 1102 Load and lock  cache 2 Kbyte 4 Kbyte

Reserved - Set to zero

4    331 8    7

# available 
instruction 
breakpoints

# available 
data 

breakpoints

0
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# Make sure change to internal software priority takes full effect
# before next instruction.
order_wrt(subsequent_operations);

break;
case 1: # Global Invalidate Instruction Cache 

invalidate_instruction_cache( );  
unlock_instruction_cache( );
break;

case 2: # Configure Instruction-Cache 
mode = src1 & 0xff;
if (mode & 1) disable_instruction_cache;
else switch (mode) {

case 0: enable_instruction_cache; break;
case 4,6: # Load & Lock code into Instr-Cache 

# All contiguous blocks are locked.
# Note:   block = way on i960 Jx microprocessor. 
# src2 has starting address of code to lock.
# src2 is aligned to a quadword 
# boundary.
aligned_addr = src2 & 0xfffffff0;
invalidate(I-cache); unlock(I-cache);
for (j = 0; j < number_of_blocks_that_lock; j++)
{way = block_associated_with_block(j);
 start = src2 + j*block_size;
 end = start + block_size;
 for (i = start; i < end; i=i+4)

{ set = set_associated_with(i);
word = word_associated_with(i);
Icache_line[set][way][word] =

 memory[i];
update_tag_n_valid_bits(set,way,word)

  lock_icache(set,way,word);
} } break;

default:
generate_operation_invalid_operand_fault;

} break;
case 3: # Software Re-init 

disable(I_cache); invalidate(I_cache);
disable(D_cache); invalidate(D_cache);
Process_PRCB(dst);  # dst has ptr to new PRCB 
IP = src2;
break;

case 5: # Modify One Memory-Mapped Control Register (MMR)
# src1[31:16] has lower 2 bytes of MMR address
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# src2 has value to write; dst has mask.
# After operation, dst has old value of MMR
addr = (0xff00 << 16) | (src1 >> 16);
temp = memory[addr];
memory[addr] = (src2 & dst) | (temp & ~dst);
dst = temp;
break;

case 6: # Breakpoint Resource Request 
acquire_available_instr_breakpoints( );
dst[3:0] = number_of_available_instr_breakpoints;
acquire_available_data_breakpoints( );
dst[7:4] = number_of_available_data_breakpoints;
dst[31:8] = 0;
break;

default: # Reserved, fault occurs 
generate_fault(OPERATION.INVALID_OPERAND);
break;

}
order_wrt(subsequent_operations);

Faults: STANDARD Refer to section 6.1.6, “Faults”
(pg. 6-6).

OPERATION.INVALID_OPERAND
TYPE.MISMATCH

Example: ldconst 0x100,r6 # Set up message.
sysctl r6,r7,r8 # Invalidate instruction

# cache.
# r7, r8 are not used.

ldconst 0x204, g0 # Set up message type and 
# cache configuration
# mode.
# Lock half cache.

ldconst 0x20000000,g2 # Starting address of
# code.

sysctl g0,g2,g2 # Execute Load and Lock.

Opcode: sysctl 659H REG  

See Also: dcctl, icctl

Notes: This instruction is implemented on 80960Jx and 80960Cx processors, and
may or may not be implemented on future i960 processors.
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6.2.68 TEST<cc>
Mnemonic: teste Test For Equal

testne Test For Not Equal
testl Test For Less
testle Test For Less Or Equal
testg Test For Greater
testge Test For Greater Or Equal
testo Test For Ordered
testno Test For Not Ordered

Format: test* dst
reg

Description: Stores a true (01H) in dst if the logical AND of the condition code and opcode
mask-part is not zero. Otherwise, the instruction stores a false (00H) in dst.
For testno (Unordered), a true is stored if the condition code is 0002,
otherwise a false is stored. 

The following table shows the condition-code mask for each instruction. The
mask is in bits 0-2 of the opcode.

The optional .t or .f suffix may be appended to the mnemonic. Use .t to speed-
up execution when these instructions usually store a true (1) condition in dst.
Use .f to speed-up execution when these instructions usually store a false (0)
condition in dst. If a suffix is not provided, the assembler is free to provide
one.

Action: For all TEST<cc> except testno:
if((mask & AC.cc) != 0002)

src1 = 1; #true value
else

src1 = 0; #false value

Instruction Mask Condition

testno 0002 Unordered

testg 0012 Greater

teste 0102 Equal

testge 0112 Greater or equal

testl 1002 Less

testne 1012 Not equal

testle 1102 Less or equal

testo 1112 Ordered
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Action: testno:
if(AC.cc == 0002)

src1 = 1; #true value
else

src1 = 0; #false value

Faults: NA

Example: # Assume AC.cc = 1002
testl g9 # g9 = 0x00000001

Opcode: teste 22H COBR
testne 25H COBR
testl 24H COBR
testle 26H COBR
testg 21H COBR
testge 23H COBR
testo 27H COBR
testno 20H COBR

See Also: cmpi, cmpdeci, cmpinci
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6.2.69 xnor, xor
Mnemonic: xnor Exclusive Nor

xor Exclusive Or

Format: xnor src1, src2, dst
reg/lit reg/lit reg

xor src1, src2, dst
reg/lit reg/lit reg

Description: Performs a bitwise XNOR (xnor instruction) or XOR (xor instruction)
operation on the src2 and src1 values and stores the result in dst.

Action: xnor:
dst = ~(src2 | src1) | (src2 & src1);

xor:
dst = (src2 | src1) & ~(src2 & src1);

Faults:  NA

Example: xnor r3, r9, r12 # r12 = r9 XNOR r3
xor g1, g7, g4 # g4 = g7 XOR g1

Opcode: xnor 589H REG
xor 586H REG

See Also: and, andnot, nand, nor, not, notand, notor, or, ornot
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CHAPTER 7
PROCEDURE CALLS

This chapter describes mechanisms for making procedure calls, which include branch-and-link
instructions, built-in call and return mechanism, call instructions (call, callx, calls), return
instruction (ret) and call actions caused by interrupts and faults.

The i960® architecture supports two methods for making procedure calls:

• A RISC-style branch-and-link: a fast call best suited for calling procedures that do not call
other procedures.

• An integrated call and return mechanism: a more versatile method for making procedure calls,
providing a highly efficient means for managing a large number of registers and the program
stack.

On a branch-and-link (bal, balx), the processor branches and saves a return IP in a register. The
called procedure uses the same set of registers and the same stack as the calling procedure. On a
call (call, callx, calls) or when an interrupt or fault occurs, the processor also branches to a target
instruction and saves a return IP. Additionally, the processor saves the local registers and allocates
a new set of local registers and a new stack for the called procedure. The saved context is restored
when the return instruction (ret) executes.

In many RISC architectures, a branch-and-link instruction is used as the base instruction for coding
a procedure call. The user program then handles register and stack management for the call. Since
the i960 architecture provides a fully integrated call and return mechanism, coding calls with
branch-and-link is not necessary. Additionally, the integrated call is much faster than typical RISC-
coded calls.

The branch-and-link instruction in the i960 processor family, therefore, is used primarily for
calling leaf procedures. Leaf procedures call no other procedures; they reside at the “leaves” of the
call tree.

In the i960 architecture the integrated call and return mechanism is used in two ways:

•  explicit calls to procedures in a user’s program

•  implicit calls to interrupt and fault handlers

The remainder of this chapter explains the generalized call mechanism used for explicit and
implicit calls and call and return instructions.
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The processor performs two call actions:

local When a local call is made, execution mode remains unchanged and the stack
frame for the called procedure is placed on the local stack. The local stack refers
to the stack of the calling procedure. 

supervisor When a supervisor call is made from user mode, execution mode is switched to
supervisor and the stack frame for the called procedure is placed on the
supervisor stack.

When a supervisor call is issued from supervisor mode, the call degenerates into
a local call (i.e., no mode nor stack switch).

Explicit procedure calls can be made using several instructions. Local call instructions call and
callx perform a local call action. With call and callx, the called procedure’s IP is included as an
operand in the instruction.

A system call is made with calls. This instruction is similar to call and callx, except that the
processor obtains the called procedure’s IP from the system procedure table. A system call, when
executed, is directed to perform either the local or supervisor call action. These calls are referred to
as system-local and system-supervisor calls, respectively. A system-supervisor call is also referred
to as a supervisor call.

7.1 CALL AND RETURN MECHANISM 

At any point in a program, the i960 processor has access to the global registers, a local register set
and the procedure stack. A subset of the stack allocated to the procedure is called the stack frame. 

• When a call executes, a new stack frame is allocated for the called procedure. The processor
also saves the current local register set, freeing these registers for use by the newly called
procedure. In this way, every procedure has a unique stack and a unique set of local registers.

• When a return executes, the current local register set and current stack frame are deallocated.
The previous local register set and previous stack frame are restored.

7.1.1 Local Registers and the Procedure Stack

The processor automatically allocates a set of 16 local registers for each procedure. Since local
registers are on-chip, they provide fast access storage for local variables. Of the 16 local registers,
13 are available for general use; r0, r1 and r2 are reserved for linkage information to tie procedures
together.



PROCEDURE CALLS

7-3

7

The processor does not always clear or initialize the set of local registers assigned to a new
procedure. Therefore, initial register contents are unpredictable. Also, because the processor does
not initialize the local register save area in the newly created stack frame for the procedure, its
contents are equally unpredictable.

The procedure stack can be located anywhere in the address space and grows from low addresses to
high addresses. It consists of contiguous frames, one frame for each active procedure. Local
registers for a procedure are assigned a save area in each stack frame (Figure 7-1). The procedure
stack, available to the user, begins after this save area.

To increase procedure call speed, the architecture allows an implementation to cache the saved
local register sets on-chip. Thus, when a procedure call is made, the contents of the current set of
local registers often do not have to be written out to the save area in the stack frame in memory.
Refer to section 7.1.4, “Caching of Local Register Sets” (pg. 7-8) and section 7.1.4.1, “Reserving
Local Register Sets for High Priority Interrupts” (pg. 7-9) for more about local registers and
procedure stack interrelations

Figure 7-1.  Procedure Stack Structure and Local Registers
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7.1.2 Local Register and Stack Management

Global register g15 (FP) and local registers r0 (PFP), r1 (SP) and r2 (RIP) contain information to
link procedures together and link local registers to the procedure stack (Figure 7-1). The following
subsections describe this linkage information.

7.1.2.1 Frame Pointer

The frame pointer is the current stack frame’s first byte address. It is stored in global register g15,
the frame pointer (FP) register. The FP register is always reserved for the frame pointer; do not use
g15 for general storage. 

Stack frame alignment is defined for each implementation of the i960 processor family, according
to an SALIGN parameter (see section A.2.5, “Data and Data Structure Alignment” (pg. A-3)). In
the i960 Jx processors, stacks are aligned on 16-byte boundaries (see Figure 7-1). When the
processor needs to create a new frame on a procedure call, it adds a padding area to the stack so
that the new frame starts on a 16-byte boundary.

7.1.2.2 Stack Pointer

The stack pointer is the byte-aligned address of the stack frame’s next unused byte. The stack
pointer value is stored in local register r1, the stack pointer (SP) register. The procedure stack
grows upward (i.e., toward higher addresses). When a stack frame is created, the processor
automatically adds 64 to the frame pointer value and stores the result in the SP register. This action
creates the register save area in the stack frame for the local registers.

The user must modify the SP register value when data is stored or removed from the stack. The
i960 architecture does not provide an explicit push or pop instruction to perform this action. This
is typically done by adding the size of all pushes to the stack in one operation.

7.1.2.3 Considerations When Pushing Data onto the Stack

Care should be taken in writing to stack in the presence of unforeseen faults and interrupts. In the
general case, to ensure that the data written to the stack is not corrupted by a fault or interrupt
record, the SP should be incremented first to allocate the space, and then the data should be written
to the space so allocated:

mov sp,r4
addo 24,sp,sp
st data,(r4)

...
st data,20(r4)
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7.1.2.4 Considerations When Popping Data off the Stack

For reasons similar to those discussed in the previous section, care should be taken in reading the
stack in the presence of unforeseen faults and interrupts. In the general case, to ensure that data
about to be popped off the stack is not corrupted by a fault or interrupt record, the data should be
read first and then the sp should be decremented:

subo 24,sp,r4

ld 20(r4),rn

...

ld (r4),rn

mov r4,sp

7.1.2.5 Previous Frame Pointer

The previous frame pointer is the previous stack frame’s first byte address. This address’ upper 28
bits are stored in local register r0, the previous frame pointer (PFP) register. The four least-
significant bits of the PFP are used to store the return-type field. 

7.1.2.6 Return Type Field

PFP register bits 0 through 3 contain return type information for the calling procedure. When a
procedure call is made — either explicit or implicit — the processor records the call type in the
return type field. The processor then uses this information to select the proper return mechanism
when returning to the calling procedure. The use of this information is described section 7.8,
“RETURNS” (pg. 7-19).

7.1.2.7 Return Instruction Pointer

The actual RIP register (r2) is reserved by the processor to support the call and return mechanism
and must not be used by software; the actual value of RIP is unpredictable at all times. For
example, an implicit procedure call (fault or interrupt) can occur at any time and modify the RIP.
An OPERATION.UNIMPLEMENTED fault is generated when attempting to write the RIP.

The image of the RIP register in the stack frame is used by the processor to determine that frame’s
return instruction address. When a call is made, the processor saves the address of the instruction
after the call in the image of the RIP register in the calling frame.

7.1.3 Call and Return Action

To clarify how procedures are linked and how the local registers and stack are managed, the
following sections describe a general call and return operation and the operations performed with
the FP, SP, PFP and RIP registers described in the preceding sections.
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The events for call and return operations are given in a logical order of operation. The i960 Jx
processors can execute independent operations in parallel; therefore, many of these events execute
simultaneously. For example, to improve performance, the processors often begin prefetch of the
target instruction for the call or return before the operation is complete.

7.1.3.1 Call Operation

When a call, calls or callx instruction is executed or an implicit call is triggered:

1. The processor stores the instruction pointer for the instruction following the call in the
current stack’s RIP register (r2).

2. The current local registers — including the PFP, SP and RIP registers — are saved, freeing
these for use by the called procedure. Because saved local registers are cached on the
i960 Jx processors, the registers are always saved in the on-chip local register cache at this
time.

3. The frame pointer (g15) for the calling procedure is stored in the current stack’s PFP
register (r0). The return type field in the PFP register is set according to the call type which
is performed. See section 7.8, “RETURNS” (pg. 7-19).

4. For a local or system-local call, new stack frame is allocated by using the old stack pointer
value saved in step 2. This value is first rounded to the next 16-byte boundary to create a
new frame pointer, then stored in the FP register. Next, 64 bytes are added to create the new
frame’s register save area. This value is stored in the SP register. 

For an interrupt call from user mode, the current interrupt stack pointer value is used instead
of the value saved in step 2.

For a system-supervisor call from user mode, the current Supervisor Stack Pointer (SSP)
value is used instead of the value saved in step 2. 

5. The instruction pointer is loaded with the address of the first instruction in the called
procedure. The processor gets the new instruction pointer from the call, the system
procedure table, the interrupt table or the fault table, depending on the type of call executed.

Upon completion of these steps, the processor begins executing the called procedure. Sometime
before a return or nested call, the local register set is bound to the allocated stack frame.

7.1.3.2 Binding of the local register set to the allocated stack frame

The time at which the local register set is actually bound to its save area in the allocated stack
frame may vary across implementations. Some implementations may perform the binding at
activation time during the call; others may perform the binding only when necessary, such as
before processing an explicit/implicit call from the activated procedure itself. This is only a
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problem when an activated procedure attempts to change its own FP; in this case it is unpredictable
where the register set is actually saved. However, there are only two possibilities for the result: the
register set must be saved at the new or at the old address. 

The following code illustrates the case:

routine1: # Suppose fp = frameA by definition of the 

# current frame.

lda frameB, fp

call routine2

routine2: flushreg

# Where did the previous local register set get

# saved? It may have been saved starting at

# address frameA or frameB depending on the 

# implementation.

The stack itself (the stack frame without the register save area) does not encounter this problem,
since its binding is immediate. The previous example is modified below to illustrate the point:

routine1: # suppose fp = frameA by definition of the 

# current frame 

# sp = frameA + 64
lda frameB, fp
st data1, sp # place data1 on stack
call routine2

routine2: flushreg
ld frameA + 64, data2

# data1 = data2 in all cases

Modification of FP should be done inside a called procedure, through the use of PFP, as described
in section 7.2, “MODIFYING THE PFP REGISTER” (pg. 7-12).
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7.1.3.3 Return Operation

A return from any call type — explicit or implicit — is always initiated with a return (ret)
instruction. On a return, the processor performs these operations:

1. The current stack frame and local registers are deallocated by loading the FP register with
the value of the PFP register.

2. The local registers for the return target procedure are retrieved. The registers are usually
read from the local register cache; however, in some cases, these registers have been flushed
from register cache to memory and must be read directly from the save area in the stack
frame. 

3. The processor sets the instruction pointer to the value of the RIP register.

Upon completion of these steps, the processor executes the instruction to which it returns. The
frames created before the ret instruction was executed will be overwritten by later implicit or
explicit call operations. 

7.1.4 Caching of Local Register Sets

Actual implementations of the i960 architecture may cache some number of local register sets
within the processor to improve performance. Local registers are typically saved and restored from
the local register cache when calls and returns are executed. Other overhead associated with a call
or return is performed in parallel with this data movement. 

When the number of nested procedures exceeds local register cache size, local register sets must at
times be saved to (and restored from) their associated save areas in the procedure stack. Because
these operations require access to external memory, this local cache miss impacts call and return
performance.

When a call is made and no frames are available in the register cache, a register set in the cache
must be saved to external memory to make room for the current set of local registers in the cache
(see section 4.2, “LOCAL REGISTER CACHE” (pg. 4-2). This action is referred to as a frame
spill. The oldest set of local registers stored in the cache is spilled to the associated local register
save area in the procedure stack. Figure 7-2 illustrates a call operation with and without a frame
spill.

Similarly, when a return is made and the local register set for the target procedure is not available
in the cache, these local registers must be retrieved from the procedure stack in memory. This
operation is referred to as a frame fill. Figure 7-3 illustrates return operations with and without
frame fills.



PROCEDURE CALLS

7-9

7

The instruction flushreg, described in section 6.2.30, “flushreg” (pg. 6-55), is provided to write all
local register sets (except the current one) to their associated stack frames in memory. The register
cache is then invalidated, meaning that all flushed register sets are restored from their save areas in
memory.

For most programs, the existence of the multiple local register sets and their saving/restoring in the
stack frames should be transparent. However, some cases where it may not be transparent follow.

• Without executing flushreg first, a store to the register save area in memory does not
necessarily update a local register set.

• Without executing flushreg first, reading from the register save area in memory does not
necessarily return the current value of a local register set.

• There is no mechanism, including flushreg, to access the current local register set with a read
or write to memory.

• flushreg must be executed sometime before returning from the current frame if the current
procedure modifies the PFP in register r0, or else the behavior of the ret instruction is not
predictable.

• The values of the local registers r2 to r15 in a new frame are undefined.

flushreg is commonly used in debuggers or fault handlers to gain access to all saved local
registers. In this way, call history may be traced back through nested procedures.

7.1.4.1 Reserving Local Register Sets for High Priority Interrupts

To decrease interrupt latency for high priority interrupts (interrupted state and process priority
greater than or equal to 28), software can limit the number of frames available to all remaining
code. This includes code that is either in the executing state (non-interrupted) or code that is in the
interrupted state, but, has a process priority less than 28. For the purposes of discussion here, this
remaining code will be referred to as non-critical code. Specifying a limit for non-critical code,
ensures that some number of free frames are available to high-priority interrupt service routines.
Software can specify the limit for non-critical code by writing bits 10 through 8 of the register
cache configuration word in the PRCB (see Figure 11-6 on page 11-16). The value indicates how
many frames within the register cache may be used by non-critical code before a frame needs to be
flushed to external memory. The programmed limit is used only when a frame is pushed, which
occurs only for an implicit or explicit call. 

Allowed values of the programmed limit range from 0 to 7. Setting the value to 0 reserves no
frames for high-priority interrupts. Setting the value to 7 causes the register cache to become
disabled for non-critical code.

Errata: 11/14/94
BWL

The settings 

specified in the last 

two sentences on 

the page were 

reversed. These 

sentences should 

read: 

“Setting the value 

to 0 reserves no 

frames for high-

priority interrupts. 

Setting the value to 

7 causes the 

register cache to 

become disabled 

for non-critical 

code.”
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Figure 7-2.  Frame Spill
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Figure 7-3.  Frame Fill
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7.2 MODIFYING THE PFP REGISTER

Modification of the PFP is typically for context switches; as part of the switch, the active
procedure changes the pointer to the frame that it will return to (previous frame pointer -- PFP).
Great care should be taken in modifying the PFP. In the general case, a flushreg must be issued
before and after modifying the PFP when the local register cache is enabled. See Example 7-1.

These requirements ensure the correct operation of a context switch on all i960 processors in all
situations.

The flushreg before the modification is necessary to ensure that the frame of the previous context
(mapped to 0x5000 in the example) is “spilled” to the proper external memory address and
removed from the local register cache. If the flushreg before the modification was omitted, a
flushreg (or implicit frame spill due to an interrupt) after the modification of PFP would cause the
frame of the previous context to be written to the wrong location in external memory.

The flushreg after the modification ensures that outstanding results are completely written to the
PFP before a subsequent ret instruction can be executed. Recall that the ret instruction uses the
low-order 4-bits of the PFP to select which ret function to perform. Requiring the flushreg after
the PFP modification allows an i960 implementation to implement a simple mechanism that
quickly selects the ret function at the time the ret instruction is issued and provides a faster return
operation.

Note the flushreg after the modification will execute very quickly because the local register cache
has already been flushed by the flushreg before; only synchronization of the PFP will be
performed. i960 implementations may provide other mechanisms to ensure PFP synchronization
in addition to flushreg, but, a flushreg after a PFP modification is ensured to work on all i960
processors.

Example 7-1.  Modifying the PFP

# Do a context switch. 

# Assume PFP = 0x5002.

flushreg # Flush Frames to correct address. 

lda 0x8002,pfp

flushreg # Ensure that "ret" gets updated PFP. 

ret
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7.3 PARAMETER PASSING

Parameters are passed between procedures in two ways:

value Parameters are passed directly to the calling procedure as part of the call and
return mechanism. This is the fastest method of passing parameters.

reference Parameters are stored in an argument list in memory and a pointer to the
argument list is passed in a global register. 

When passing parameters by value, the calling procedure stores the parameters to be passed in
global registers. Since the calling procedure and the called procedure share the global registers, the
called procedure has direct access to the parameters after the call.

When a procedure needs to pass more parameters than will fit in the global registers, they can be
passed by reference. Here, parameters are placed in an argument list and a pointer to the argument
list is placed in a global register.

The argument list can be stored anywhere in memory; however, a convenient place to store an
argument list is in the stack for a calling procedure. Space for the argument list is created by incre-
menting the SP register value. If the argument list is stored in the current stack, the argument list is
automatically deallocated when no longer needed. 

A procedure receives parameters from — and returns values to — other calling procedures. To do
this successfully and consistently, all procedures must agree on the use of the global registers. 

Parameter registers pass values into a function. Up to 12 parameters can be passed by value using
the global registers. If the number of parameters exceeds 12, additional parameters are passed
using the calling procedure’s stack; a pointer to the argument list is passed in a pre-designated
register. Similarly, several registers are set aside for return arguments and a return argument block
pointer is defined to point to additional parameters. If the number of return arguments exceeds the
available number of return argument registers, the calling procedure passes a pointer to an
argument list on its stack where the remaining return values will be placed. Example 7-2 illustrates
parameter passing by value and reference.
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Local registers are automatically saved when a call is made. Because of the local register cache,
they are saved quickly and with no external bus traffic. The efficiency of the local register
mechanism plays an important role in two cases when calls are made:

1. When a procedure is called which contains other calls, global parameter registers should be
moved to working local registers at the beginning of the procedure. In this way, parameter
registers are freed and nested calls are easily managed. The register move instruction
necessary to perform this action is very fast; the working parameters — now in local
registers — are saved efficiently when nested calls are made. 

2. When other procedures are nested within an interrupt or fault procedure, the procedure
must preserve all normally non-preserved parameter registers, such as the global registers.
This is necessary because the interrupt or fault occurs at any point in the user’s program and
a return from an interrupt or fault must restore the exact processor state. The interrupt or
fault procedure can move non-preserved global registers to local registers before the nested
call.

Example 7-2.  Parameter Passing Code Example

7.4 LOCAL CALLS

A local call does not cause a stack switch. A local call can be made two ways:

• with the call and callx instructions; or

• with a system-local call as described in section 7.5, “SYSTEM CALLS” (pg. 7-15). 

# Example of parameter passing . . .
# C-source: int a,b[10];
# a = proc1(a,1,’x’,&b[0]); 
# assembles to ...

mov r3,g0 # value of a
ldconst 1,g1 # value of 1
ldconst 120,g2 # value of “x”
lda 0x40(fp),g3 # reference to b[10]
call _proc1
mov g0,r3 #save return value in “a”

.

.
_proc1:

movq g0,r4 # save parameters
.
. # other instructions in procedure
. # and nested calls

mov r3,g0 # load return parameter
ret
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call specifies the address of the called procedures as the IP plus a signed, 24-bit displacement (i.e.,
-223 to 223 - 4). callx allows any of the addressing modes to be used to specify the procedure
address. The IP-with-displacement addressing mode allows full 32-bit IP-relative addressing.

When a local call is made with a call or callx, the processor performs the same operation as
described in section 7.1.3.1, “Call Operation” (pg. 7-6). The target IP for the call is derived from
the instruction’s operands and the new stack frame is allocated on the current stack.

7.5 SYSTEM CALLS

A system call is a call made via the system procedure table. It can be used to make a system-local
call — similar to a local call made with call and callx in the sense that there is no stack nor mode
switch — or a system supervisor call. A system call is initiated with calls, which requires a
procedure number operand. The procedure number provides an index into the system procedure
table, where the processor finds IPs for specific procedures.

Using an i960 processor language assembler, a system procedure is directly declared using the
.sysproc directive. At link time, the optimized call directive, callj, is replaced with a calls when a
system procedure target is specified. (Refer to current i960 processor assembler documentation for
a description of the .sysproc and callj directives.)

The system call mechanism offers two benefits. First, it supports application software portability.
System calls are commonly used to call kernel services. By calling these services with a procedure
number rather than a specific IP, applications software does not need to be changed each time the
implementation of the kernel services is modified. Only the entries in the system procedure table
must be changed. Second, the ability to switch to a different execution mode and stack with a
system supervisor call allows kernel procedures and data to be insulated from applications code.
This benefit is further described in section 3.7, “USER SUPERVISOR PROTECTION MODEL”
(pg. 3-22).

7.5.1 System Procedure Table

The system procedure table is a data structure for storing IPs to system procedures. These can be
procedures which software can access through (1) a system call or (2) the fault handling
mechanism. Using the system procedure table to store IPs for fault handling is described in section
9.1, “FAULT HANDLING FACILITIES OVERVIEW” (pg. 9-1).

Figure 7-4 shows the system procedure table structure. It is 1088 bytes in length and can have up to
260 procedure entries. At initialization, the processor caches a pointer to the system procedure
table. This pointer is located in the PRCB. The following subsections describe this table’s fields.
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Figure 7-4.  System Procedure Table

7.5.1.1 Procedure Entries

A procedure entry in the system procedure table specifies a procedure’s location and type. Each
entry is one word in length and consists of an address (IP) field and a type field. The address field
gives the address of the first instruction of the target procedure. Since all instructions are word
aligned, only the entry’s 30 most significant bits are used for the address. The entry’s two least-
significant bits specify entry type. The procedure entry type field indicates call type: system-local
call or system-supervisor call (Table 7-1). On a system call, the processor performs different
actions depending on the type of call selected. 

Reserved
(Initialize to 0)

000H

008H

00CH

010H

02CH

034H

030H

038H

03CH

438H
43CH

Entry Type:
00 - Local
10-Supervisor

Trace
Control
Bit

031

Procedure Entry

Tsupervisor stack pointer base

procedure entry 2

procedure entry 1

procedure entry 0

procedure entry 259

.

.

.

Preserved

address

031 12

F_CA013A



PROCEDURE CALLS

7-17

7

7.5.1.2 Supervisor Stack Pointer

When a system-supervisor call is made, the processor switches to a new stack called the supervisor
stack, if not already in supervisor mode. The processor gets a pointer to this stack from the
supervisor stack pointer field in the system procedure table (Figure 7-4) during the reset initial-
ization sequence and caches the pointer internally. Only the 30 most significant bits of the
supervisor stack pointer are given. The processor aligns this value to the next 16 byte boundary to
determine the first byte of the new stack frame.

7.5.1.3 Trace Control Bit

The trace control bit (byte 12, bit 0) specifies the new value of the trace enable bit in the PC register
(PC.te) when a system-supervisor call causes a switch from user mode to supervisor mode. Setting
this bit to 1 enables tracing in the supervisor mode; setting it to 0 disables tracing. The use of this
bit is described in section 10.1.2, “PC Trace Enable Bit and Trace-Fault-Pending Flag” (pg. 10-3).

7.5.2 System Call to a Local Procedure

When a calls instruction references an entry in the system procedure table with an entry type of 00,
the processor executes a system-local call to the selected procedure. The action that the processor
performs is the same as described in section 7.1.3.1, “Call Operation” (pg. 7-6). The call’s target IP
is taken from the system procedure table and the new stack frame is allocated on the current stack,
and the processor does not switch to supervisor mode. The calls algorithm is described in section
6.2.14, “calls” (pg. 6-26).

7.5.3 System Call to a Supervisor Procedure

When a calls instruction references an entry in the system procedure table with an entry type of
102, the processor executes a system-supervisor call to the selected procedure. The call’s target IP
is taken from the system procedure table.

Table 7-1.  Encodings of Entry Type Field in System Procedure Table

Encoding Call Type

00 System-Local Call

01 Reserved1

10 System-Supervisor Call

11 Reserved1

1. Calls with reserved entry types have unpredictable behavior.
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The processor performs the same action as described in section 7.1.3.1, “Call Operation” (pg. 7-6),
with the following exceptions:

• If the processor is in user mode, it switches to supervisor mode.

• If a mode switch occurs, SP is read from the Supervisor Stack Pointer (SSP) base. A new
frame for the called procedure is placed at the location pointed to after alignment of SP. 

• If no mode switch occurs, the new frame is allocated on the current stack.

• If a mode switch occurs, the state of the trace enable bit in the PC register is saved in the
return type field in the PFP register. The trace enable bit is then loaded from the trace control
bit in the system procedure table.

• If no mode switch occurs, the value 0002 (calls instruction) or 0012 (fault call) is saved in the
return type field of the pfp register.

When the processor switches to supervisor mode, it remains in that mode and creates new frames
on the supervisor stack until a return is performed from the procedure that caused the original
switch to supervisor mode. While in supervisor mode, either the local call instructions (call and
callx) or calls can be used to call procedures.

The user-supervisor protection model and its relationship to the supervisor call are described in
section 3.7, “USER SUPERVISOR PROTECTION MODEL” (pg. 3-22). 

7.6 USER AND SUPERVISOR STACKS

When using the user-supervisor protection mechanism, the processor maintains separate stacks in
the address space. One of these stacks — the user stack — is for procedures executed in user
mode; the other stack — the supervisor stack — is for procedures executed in supervisor mode.

The user and supervisor stacks are identical in structure (Figure 7-1). The base stack pointer for
the supervisor stack is automatically read from the system procedure table and cached internally
during initialization. Each time a user-to-supervisor mode switch occurs, the cached supervisor
stack pointer base is used for the starting point of the new supervisor stack. The base stack pointer
for the user stack is usually created in the initialization code. See section 11.2, “INITIAL-
IZATION” (pg. 11-2). The base stack pointers must be aligned to a 16-byte boundary; otherwise,
the first frame pointer on the interrupt stack is rounded up to the previous 16-byte boundary. 
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7.7 INTERRUPT AND FAULT CALLS

The architecture defines two types of implicit calls that make use of the call and return mechanism:
interrupt handling procedure calls and fault handling procedure calls. A call to an interrupt
procedure is similar to a system-supervisor call. Here, the processor obtains pointers to the
interrupt procedures through the interrupt table. The processor always switches to supervisor mode
on an interrupt procedure call.

A call to a fault procedure is similar to a system call. Fault procedure calls can be local calls or
supervisor calls. The processor obtains pointers to fault procedures through the fault table and
(optionally) through the system procedure table. 

When a fault call or interrupt call is made, a fault record or interrupt record is placed in the newly
generated stack frame for the call. These records hold the machine state and information to identify
the fault or interrupt. When a return from an interrupt or fault is executed, machine state is restored
from these records. See CHAPTER 9, FAULTS for more information on the structure of the fault
and interrupt records.

7.8 RETURNS

The return (ret) instruction provides a generalized return mechanism that can be used to return
from any procedure that was entered by call, calls, callx, an interrupt call or a fault call. When ret
executes, the processor uses the information from the return-type field in the PFP register (Figure
7-5) to determine the type of return action to take.

Figure 7-5.  Previous Frame Pointer Register (PFP) (r0)

return-type field indicates the type of call which was made. Table 7-2 shows the return-type field
encoding for the various calls: local, supervisor, interrupt and fault.
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trace-on-return flag (PFP.rt0 or bit 0 of the return-type field) stores the trace enable bit value when
a system-supervisor call is made from user mode. When the call is made, the PC register trace
enable bit is saved as the trace-on-return flag and then replaced by the trace controls bit in the
system procedure table. On a return, the trace enable bit's original value is restored. This
mechanism allows instruction tracing to be turned on or off when a supervisor mode switch
occurs. See section 10.5.2.3, “Tracing on Return from Explicit Call” (pg. 10-14).

prereturn-trace flag (PFP.p) is used in conjunction with call-trace and prereturn-trace modes. If
call-trace mode is enabled when a call is made, the processor sets the prereturn-trace flag;
otherwise it clears the flag. Then, if this flag is set and prereturn-trace mode is enabled, a prereturn
trace event is generated on a return, before any actions associated with the return operation are
performed. See section 10.2, “TRACE MODES” (pg. 10-3) for a discussion of interaction between
call-trace and prereturn-trace modes with the prereturn-trace flag.

Table 7-2.  Encoding of Return Status Field

Return Status 
Field

Call Type Return Action

000
Local call 
(system-local call or system-supervisor 
call made from supervisor mode)

Local return
(return to local stack; no mode switch)

001 Fault call Fault return

01t System-supervisor from user mode

Supervisor return
(return to user stack, mode switch to user 
mode, trace enable bit is replaced with the t bit 
stored in the PFP register on the call)

100 reserved 1

101 reserved1

110 reserved1

111 Interrupt call Interrupt return

NOTE: “t” denotes the trace-on-return flag; used only for system supervisor calls which cause a user-to-
supervisor mode switch.

1. This return type results in unpredictable behavior.
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7.9 BRANCH-AND-LINK

A branch-and-link is executed using either the branch-and-link instruction (bal) or branch-and-
link-extended instruction (balx). When either instruction executes, the processor branches to the
first instruction of the called procedure (the target instruction), while saving a return IP for the
calling procedure in a register. The called procedure uses the same set of local registers and stack
frame as the calling procedure:

• For bal, the return IP is automatically saved in global register g14

• For balx, the return IP instruction is saved in a register specified by one of the instruction’s
operands

A return from a branch-and-link is generally carried out with a bx (branch extended) instruction,
where the branch target is the address saved with the branch-and-link instruction. The branch-and-
link method of making procedure calls is recommended for calls to leaf procedures. Leaf
procedures typically call no other procedures. Branch-and-link is the fastest way to make a call,
providing the calling procedure does not require its own registers or stack frame.
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CHAPTER 8
INTERRUPTS

This chapter describes how a programmer uses the processor’s interrupt mechanism, defines data
structures used for interrupt handling and describes actions that the processor takes when handling
an interrupt.

CHAPTER 13, INTERRUPT CONTROLLER describes the hardware mechanism for signaling
and posting interrupts.

8.1 OVERVIEW

An interrupt is an event that causes a temporary break in program execution so the processor can
handle another chore. Interrupts commonly request I/O services or synchronize the processor with
some external hardware activity. For interrupt handler portability across the i960® processor
family implementations, the architecture defines a consistent interrupt state and interrupt-priority-
handling mechanism. To manage and prioritize interrupt requests in parallel with processor
execution, the i960 Jx processor provides an on-chip programmable interrupt controller.

Requests for interrupt service come from many sources. These requests are prioritized so that
instruction execution is redirected only if an interrupt request is of higher priority than that of the
executing task.

When the processor is redirected to service an interrupt, it uses a vector number that accompanies
the interrupt request to locate the vector entry in the interrupt table. From that entry, it gets an
address to the first instruction of the selected interrupt procedure. The processor then makes an
implicit call to that procedure.

When the interrupt call is made, the processor uses a dedicated interrupt stack. A new frame is
created for the interrupt on this stack and a new set of local registers is allocated to the interrupt
procedure. The interrupted program’s current state is also saved.

Upon return from the interrupt procedure, the processor restores the interrupted program’s state,
switches back to the stack that the processor was using prior to the interrupt and resumes program
execution.

Since interrupts are handled based on priority, requested interrupts are often saved for later service
rather than being handled immediately. The mechanism for saving the interrupt is referred to as
interrupt posting. The mechanism the i960 Jx processor uses for posting interrupts is described in
section 13.2, “MANAGING INTERRUPT REQUESTS” (pg. 13-2).
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On the i960 Jx processor, interrupt requests may originate from external hardware sources,
internal timer unit sources or from software. External interrupts are detected with the chip’s 8-bit
interrupt port and with a dedicated NMI input. Interrupt requests originate from software by the
sysctl instruction which signals interrupts. To manage and prioritize all possible interrupts, the
processor integrates an on-chip programmable interrupt controller. Integrated interrupt controller
configuration and operation is described in CHAPTER 13, INTERRUPT CONTROLLER.

The i960 architecture defines two data structures to support interrupt processing: the interrupt
table and interrupt stack (see Figure 8-1). The interrupt table contains 248 vectors for interrupt
handling procedures (eight of which are reserved) and an area for posting software requested
interrupts. The interrupt stack prevents interrupt handling procedures from overwriting the stack in
use by the application program. It also allows the interrupt stack to be located in a different area of
memory than the user and supervisor stack (fast SRAM, for example).

Figure 8-1.  Interrupt Handling Data Structures

8.2 SOFTWARE REQUIREMENTS FOR INTERRUPT HANDLING

To use the processor’s interrupt handling facilities, user software must provide the following items
in memory:

• Interrupt Table

• Interrupt Handler Routines

• Interrupt Stack

These items are established in memory as part of the initialization procedure. Once these items are
present in memory and pointers to them have been entered in the appropriate system data
structures, the processor handles interrupts automatically and independently from software.
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8.3 INTERRUPT PRIORITY

Each interrupt procedure pointer is eight bits in length, which allows up to 241 unique procedure
pointers to be defined. Each procedure pointer’s priority is defined by dividing the procedure
pointer number by eight. Thus, at each priority level, there are eight possible procedure pointers
(e.g., procedure pointers 8 through 15 have a priority of 1 and procedure pointers 246 through 255
have a priority of 31). Procedure pointers 0 through 7 cannot be used. Since 0 priority is the lowest
priority, a priority-0 interrupt will never successfully stop execution of a program of any priority.

The processor compares its current priority with the interrupt request priority to determine whether
to service the interrupt immediately or to delay service. The interrupt is serviced immediately if the
interrupt request priority is higher than the processor’s current priority (the priority of the program
or interrupt the processor is executing). If the interrupt priority is less than or equal to the
processor’s current priority, the processor does not service the request but rather posts it as a
pending interrupt. When multiple interrupt requests are pending at the same priority level, the
request with the highest vector number is serviced first.

Priority-31 interrupts are handled as a special case. Even when the processor is executing at
priority level 31, a priority-31 interrupt will interrupt the processor.

The processor may post requests for later servicing. Interrupts waiting to be serviced — called
pending interrupts — are discussed in section 8.4.2, “Pending Interrupts” (pg. 8-5).

8.4 INTERRUPT TABLE

The interrupt table (Figure 8-2), 1028 bytes in length, can be located anywhere in the non-reserved
address space. It must be aligned on a word boundary. The processor reads a pointer to interrupt
table byte 0 during initialization. The interrupt table must be located in RAM since the processor
must be able to read and write the table’s pending interrupt section.

The interrupt table is divided into two sections: vector entries and pending interrupts. Each are
described in the subsections that follow.
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Figure 8-2.  Interrupt Table

8.4.1 Vector Entries

A vector entry contains a specific interrupt handler’s address. When an interrupt is serviced, the
processor branches to the address specified by the vector entry.

X  X
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028H (Vector 9)
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400H (Vector 255)

Entry Type:
00  Normal

10  Target in Cache
01  Reserved1

Pending Priorities

Pending Interrupts

Entry 8

Entry 9

NMI Vector

Vector Entry

Instruction Pointer

...

Reserved (Initialize to 0)

Preserved

0

012

7831

...

Entry 252

Entry 255

...

Entry 243

Entry 10...

3E0H (Vector 247)

F_CA016A

11  Reserved1

1Vector entries with a reserved 
type have unpredictable behavior.
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Each interrupt is associated with an 8-bit vector number which points to a vector entry in the
interrupt table. The vector entry section contains 248 one-word entries. Vector numbers 8 through
243 and 252 through 255 and their associated vector entries are used for conventional interrupts.
Vector number 248 is the NMI vector. Vector numbers 244 - 247 and 249 - 251 are reserved. Vector
numbers 0 through 7 cannot be used.

Vector entry structure is given at the bottom of Figure 8-2. Each interrupt procedure must begin on
a word boundary, so the processor assumes that the vector’s two least significant bits are 0. 

8.4.2 Pending Interrupts

The pending interrupts section comprises the interrupt table’s first 36 bytes, divided into two
fields: pending priorities (byte offset 0 through 3) and pending interrupts (4 through 35).

Each of the 32 bits in the pending priorities field indicate an interrupt priority. When the processor
posts a pending interrupt in the interrupt table, the bit corresponding to the interrupt’s priority is
set. For example, if an interrupt with a priority of 10 is posted in the interrupt table, bit 10 is set.

Each of the pending interrupts field’s 256 bits represent an interrupt procedure pointer. Byte offset
5 is for vectors 8 through 15, byte offset 6 is for vectors 16 through 23, and so on. Byte offset 4, the
first byte of the pending interrupts field, is reserved. When an interrupt is posted, its corresponding
bit in the pending interrupt field is set.

This encoding of the pending priority and pending interrupt fields permits the processor to first
check if there are any pending interrupts with a priority greater than the current program and then
determine the vector number of the interrupt with the highest priority.

8.5 INTERRUPT STACK AND INTERRUPT RECORD

The interrupt stack can be located anywhere in the non-reserved address space. The processor
obtains a pointer to the base of the stack during initialization. The interrupt stack has the same
structure as the local procedure stack described in section 7.1.1, “Local Registers and the
Procedure Stack” (pg. 7-2). As with the local stack, the interrupt stack grows from lower addresses
to higher addresses.

The processor saves the state of an interrupted program — or an interrupted interrupt procedure —
in a record on the interrupt stack. Figure 8-3 shows the structure of this interrupt record.

The interrupt record is always stored on the interrupt stack adjacent to the new frame that is created
for the interrupt handling procedure. It includes the state of the AC and PC registers at the time the
interrupt was received and the interrupt procedure pointer number used. Referenced to the new
frame pointer address (designated NFP), the saved AC register is located at address NFP-12; the
saved PC register is located at address NFP-16.
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Figure 8-3.  Storage of an Interrupt Record on the Interrupt Stack

8.6 INTERRUPT SERVICE ROUTINES

An interrupt handling procedure performs a specific action that is associated with a particular
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The interrupt procedure shares the remainder of the execution environment resources (namely the
global registers and the address space) with the interrupted program. Thus, interrupt procedures
must preserve and restore the state of any resources shared with a non-cooperating program.
Interrupt procedures must preserve and restore the state of any resources shared with a non-
cooperating program. 

For example, an interrupt procedure which uses a global register which is not permanently
allocated to it should save the register’s contents before it uses the register and restore the contents
before returning from the interrupt handler.

To reduce interrupt latency to critical interrupt routines, interrupt handlers may be locked into the
instruction cache. See section 13.5.2.2, “Caching Interrupt Routines and Reserving Register
Frames” (pg. 13-23) for a complete description.

8.7 INTERRUPT CONTEXT SWITCH

When the processor services an interrupt, it automatically saves the interrupted program state or
interrupt procedure and calls the interrupt handling procedure associated with the new interrupt
request. When the interrupt handler completes, the processor automatically restores the interrupted
program state.

The method that the processor uses to service an interrupt depends on the processor state when the
interrupt is received. If the processor is executing a background task when an interrupt request is to
be serviced, the interrupt context switch must change stacks to the interrupt stack. This is called an
executing-state interrupt. If the processor is already executing an interrupt handler, no stack switch
is required since the interrupt stack will already be in use. This is called an interrupted-state
interrupt.

The following subsections describe interrupt handling actions for executing-state and interrupted-
state interrupts. In both cases, it is assumed that the interrupt priority is higher than that of the
processor and thus is serviced immediately when the processor receives it.
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8.7.1 Executing-State Interrupt 

When the processor receives an interrupt while in the executing state (i.e., executing a program), it
performs the following actions to service the interrupt. This procedure is the same regardless of
whether the processor is in user or supervisor mode when the interrupt occurs. The processor: 

1. switches to the interrupt stack (as shown in Figure 8-3). The interrupt stack pointer becomes
the new stack pointer for the processor. 

2. saves the current state of process controls and arithmetic controls in an interrupt record on
the interrupt stack. The processor also saves the interrupt procedure pointer number.

3. allocates a new frame on the interrupt stack and loads the new frame pointer (NFP) in global
register g15. 

4. switches to the interrupted state. 

5. sets the state flag in its internal process controls to interrupted, its execution mode to
supervisor and its priority to the priority of the interrupt. Setting the processor's priority to
that of the interrupt ensures that lower priority interrupts cannot interrupt the servicing of
the current interrupt. 

6. clears the trace-enable flag in its internal process controls. Clearing these flags allows the
interrupt to be handled without trace faults being raised. 

7. sets the frame return status field (associated with the PFP in register r0) to 1112. 

8. performs a call operation as described in CHAPTER 7, PROCEDURE CALLS. The address
for the called procedure is specified in the interrupt table for the specified interrupt
procedure pointer. 

Once the processor completes the interrupt procedure, it performs the following return actions: 

1. copies the arithmetic controls field and the process controls field from the interrupt record
into the arithmetic controls register and process controls, respectively. It also returns the
trace-enable bit to its value before the interrupt occurred. 

2. deallocates the current stack frame and interrupt record from the interrupt stack and
switches to the local or supervisor stack (the one it was using when it was interrupted). 

3. performs a return operation as described in CHAPTER 7, PROCEDURE CALLS. This
causes the processor to switch back to the local or supervisor stack (whichever it was using
before the interrupt).

4. switches to the executing state and resumes work on the program, if there are no pending
interrupts to be serviced or trace faults to be handled. 
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8.7.2 Interrupted-State Interrupt 

If the processor receives an interrupt while it is servicing another interrupt, and the new interrupt
has a higher priority than the interrupt currently being serviced, the current interrupt-handler
routine is interrupted. Here, the processor performs the same interrupt-servicing action as is
described in section 8.7.1, “Executing-State Interrupt” (pg. 8-8) to save the state of the interrupted
interrupt-handler routine. The interrupt record is saved on the top of the interrupt stack prior to the
new frame that is created for use in servicing the new interrupt. 

On the return from the current interrupt handler to the previous interrupt handler, the processor de-
allocates the current stack frame and interrupt record, and stays on the interrupt stack. 
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CHAPTER 9
FAULTS

This chapter describes the i960® Jx processor’s fault handling facilities. Subjects covered include
the fault handling data structures and fault handling mechanism. See section 9.11, “FAULT
REFERENCE” (pg. 9-21) for detailed information on each fault type.

9.1 FAULT HANDLING FACILITIES OVERVIEW

The i960 processor architecture defines various conditions in code and/or the processor’s internal
state that could cause the processor to deliver incorrect or inappropriate results or that could cause
it to choose an undesirable control path. These are called fault conditions. For example the archi-
tecture defines faults for divide-by-zero and overflow conditions on integer calculations with an
inappropriate operand value.

As shown in Figure 9-1, the architecture defines a fault table, a system procedure table, a set of
fault handling procedures and stacks (user stack, supervisor stack, interrupt stack) to handle
processor-generated faults.

Figure 9-1.  Fault-Handling Data Structures
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The fault table contains pointers to fault handling procedures. The system procedure table
optionally provides an interface to any fault handling procedure and allows faults to be handled in
supervisor mode. Stack frames for fault handling procedures are created on either the user or
supervisor stack, depending on the mode in which the fault is handled. While servicing an
interrupt, the processor uses the interrupt stack.

Once these data structures and the code for the fault procedures are established in memory, the
processor handles faults automatically and independently from application software. 

The processor can detect a fault at any time while executing instructions, whether from a program,
interrupt handling procedure or fault handling procedure. When a fault occurs, the processor
determines the fault type and selects a corresponding fault handling procedure from the fault table.
It then invokes the fault handling procedure by means of an implicit call. As described later in this
chapter, the fault handler call can be:

• A local call (call-extended operation)

• A system-local call (local call through the system procedure table)

• A system-supervisor call (supervisor call through the system procedure table)

As part of the implicit call to the fault handling procedure, the processor creates a fault record on
the stack that the fault handling procedure is using. This record includes information on the fault
and the processor’s state when the fault was generated.

After the fault record is created, the processor executes the selected fault handling procedure. If a
fault is recoverable (i.e., the program can be resumed after handling the fault) the Return
Instruction Pointer (RIP) is defined for the fault being serviced (see section 9.11, “FAULT
REFERENCE” (pg. 9-21), the processor will resume execution at the RIP upon return from the
fault handler. If the RIP is undefined, the fault handling procedure can create one by using the
flushreg instruction followed by a modification of the RIP in the previous frame. The fault
handler can also call a debug monitor or reset the processor instead of resuming prior execution. 

This procedure call mechanism also handles faults that occur:

• While the processor is servicing an interrupt

• While the processor is working on another fault handling procedure

9.2 FAULT TYPES

The i960 architecture defines a basic set of faults that are categorized by type and subtype. Each
fault has a unique type and subtype number. When the processor detects a fault, it records the fault
type and subtype numbers in a fault record. It then uses the type number to select a fault handling
procedure. 
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The fault handling procedure can optionally use the subtype number to select a specific fault
handling action. The i960 Jx processor recognizes i960 architecture-defined faults and a new fault
subtype for detecting unaligned memory accesses. Table 9-1 lists all faults that the i960 Jx
processor detects, arranged by type and subtype. Text that follows the table gives column defini-
tions.

In Table 9-1:

• The first (left-most) column contains the fault type numbers in hexadecimal.

• The second column shows the fault type name.

Table 9-1.  i960® Jx Processor Fault Types and Subtypes

Fault Type Fault Subtype Fault Record

Number Name
Number or 
Bit Position

Name

0H OVERRIDE NA NA
See section 9.10.1, 
“Overrides” (pg. 9-21)

0H PARALLEL NA NA
see section 9.6.4, “Parallel 
Faults” (pg. 9-11)

1H TRACE

Bit 1

Bit 2

Bit 3

Bit 4

Bit 5

Bit 6

Bit 7

INSTRUCTION 

BRANCH 

CALL 

RETURN 

PRERETURN 

SUPERVISOR 

MARK

XX01 XX02H

XX01 XX04H

XX01 XX08H

XX01 XX10H

XX01 XX20H

XX01 XX40H

XX01 XX80H

2H OPERATION

1H

2H

3H

4H

INVALID_OPCODE

UNIMPLEMENTED

UNALIGNED

INVALID_OPERAND

XX02 XX01H

XX02 XX02H

XX02 XX03H

XX02 XX04H

3H ARITHMETIC
1H

2H

INTEGER_OVERFLOW

ZERO-DIVIDE

XX03 XX01H

XX03 XX02H

4H Reserved

5H CONSTRAINT 1H RANGE XX05 XX01H

6H Reserved

7H PROTECTION Bit 1 LENGTH XX07 XX02H

8H - 9H Reserved

AH TYPE 1H  MISMATCH XX0A XX01H

BH - FH Reserved

Errata (10-25-94) BWL- Incorrect
fault record number for 7H
PROTECTION fault.

Original text: XX07 XX01H
Corrected text: XX07 XX02H
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• The third column gives the fault subtype number as either: (1) a hexadecimal number or (2) as
a bit position in the fault record’s 8-bit fault subtype field. The bit position method of
indicating a fault subtype is used for certain faults (such as trace faults) in which two or more
fault subtypes may occur simultaneously.

• The fourth column gives the fault subtype name. For convenience, individual faults are
referred to in this manual by their fault-subtype name. Thus an
OPERATION.INVALID_OPERAND fault is referred to as simply an INVALID_OPERAND
fault; an ARITHMETIC.INTEGER_OVERFLOW fault is referred to as an
INTEGER_OVERFLOW fault.

• The fifth column shows the encoding of the word in the fault record that contains the fault
type and fault subtype numbers.

Other i960 processor family members may provide extensions that recognize additional fault
conditions. Fault type and subtype encoding allows all faults to be included in the fault table: those
that are common to all i960 processors and those that are specific to one or more family members.
The fault types are used consistently for all family members. For example, Fault Type 4 is reserved
for floating point faults. Any i960 processor with floating point operations uses Entry 4 to store the
pointer to the floating point fault handling procedure.

9.3 FAULT TABLE

The fault table (Figure 9-2) is the processor’s pathway to the fault handling procedures. It can be
located anywhere in the address space. The processor obtains a pointer to the fault table during
initialization.

The fault table contains one entry for each fault type. When a fault occurs, the processor uses the
fault type to select an entry in the fault table. From this entry, the processor obtains a pointer to the
fault handling procedure for the type of fault that occurred. Once called, a fault handling procedure
has the option of reading the fault subtype or subtypes from the fault record when determining the
appropriate fault recovery action.
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Figure 9-2.  Fault Table and Fault Table Entries
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As indicated in Figure 9-2, two fault table entry types are allowed: local-call entry and system-call
entry. Each is two words in length. The entry type field (bits 0 and 1 of the entry’s first word) and
the value in the entry’s second word determine the entry type.

Other entry types (012 and 112) are reserved and have unpredictable behavior. To summarize, a
fault handling procedure can be invoked through the fault table in any of three ways: a local call, a
system-local call or a system-supervisor call.

9.4 STACK USED IN FAULT HANDLING

The architecture does not define a dedicated fault handling stack. Instead, to handle a fault, the
processor uses either the user, interrupt or supervisor stack, whichever is active when the fault is
generated. There is however, one exception: if the user stack is active when a fault is generated and
the fault handling procedure is called with an implicit system supervisor call, the processor
switches to the supervisor stack to handle the fault.

9.5 FAULT RECORD

When a fault occurs, the processor records information about the fault in a fault record in memory.
The fault handling procedure uses the information in the fault record to correct or recover from the
fault condition and, if possible, resume program execution. The fault record is stored on the stack
that the fault handling procedure will use to handle the fault.

local-call entry
(type 002)

Provides an instruction pointer for the fault handling procedure. The
processor uses this entry to invoke the specified procedure by means of an
implicit local-call operation. The second word of a local procedure entry is
reserved. It must be set to zero when the fault table is created and not
accessed after that.

system-call entry
(type 102)

Provides a procedure number in the system procedure table. This entry must
have an entry type of 102 and a value in the second word of 0000 027FH.
Using this entry, the processor invokes the specified fault handling procedure
by means of an implicit call-system operation similar to that performed for
the calls instruction. A fault handling procedure in the system procedure
table can be called with a system-local call or a system-supervisor call,
depending on the entry type in the system-procedure table.
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9.5.1 Fault Record Description

Figure 9-3 shows the fault record’s structure. In this record, the fault’s type number is stored in the
fault type field and the fault’s subtype number (or bit positions for multiple subtypes) is stored in
the fault subtype field. The address-of-faulting-instruction field contains the IP of the instruction
that caused the processor to fault.

When a fault is generated, the existing PC and AC register contents are stored in their respective
fault record fields. The processor uses this information to resume program execution after the fault
is handled. 
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Figure 9-3.  Fault Record

The Override fault data field is used to store optional data for the override fault condition. Refer to
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the faulting conditions, usually to assist resumption. Refer to section 9.11, “FAULT
REFERENCE” (pg. 9-21) for more details on the faults that use this field. All unused bytes in the
fault record are reserved.

9.5.2 Fault Record Location

The fault record is stored on the stack that the processor uses to execute the fault handling
procedure. As shown in Figure 9-4, this stack can be the user stack, supervisor stack or interrupt
stack. The fault record begins at byte address NFP-1. NFP refers to the new frame pointer that is
computed by adding the memory size allocated for padding and the fault record to the new stack
pointer (NSP). The processor rounds the FP to the next 16-byte boundary and then allocates 80
bytes for the fault record. The size and alignment of the fault record is implementation-dependent.

Figure 9-4.  Storage of the Fault Record on the Stack
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2. If the processor is in user mode and the fault handler procedure is called with a system supervisor call, the processor
switches to the supervisor stack.
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9.6 MULTIPLE AND PARALLEL FAULTS

Multiple fault conditions can occur during a single instruction execution and during multiple
instruction execution when the instructions are executed by different units within the processor.
The following sections describe how faults are handled under these conditions.

9.6.1 Multiple Non-Trace Faults on the Same Instruction

Multiple fault conditions can occur during a single instruction execution. For example, an
instruction can have an invalid operand and unaligned address. When this situation occurs, the
processor is required to recognize and generate at least one of the fault conditions. The processor
may not detect all fault conditions and may not report all detected faults on a single instruction.

In a multiple fault situation, the reported fault condition is left to the implementation. On the Jx
processor, all non-trace fault conditions present in one instruction are prioritized. Only the non-
trace fault of highest priority is reported in the fault record. The faults by order of decreasing
priority are:

• PROTECTION.LENGTH

• OPERATION.UNIMPLEMENTED (Attempt to execute from on-chip RAM or a memory-
mapped region only.)

• OPERATION.UNALIGNED

• OPERATION.INVALID_OPCODE

• OPERATION.INVALID_OPERAND

• TYPE.MISMATCH

• OPERATION.UNIMPLEMENTED (All other faults related to unimplemented operations)

• ARITHMETIC.ZERO_DIVIDE

• ARITHMETIC.INTEGER_OVERFLOW

• CONSTRAINT.RANGE

9.6.2 Multiple Trace and Fault Conditions on the Same Instruction

Trace faults on different instructions cannot happen concurrently, because trace faults are precise.
Multiple trace fault conditions on the same instruction are reported in a single trace fault record
(with the exception of prereturn trace, which always happens alone). To support this multiple fault
reporting, the trace fault uses bit positions in the fault-subtype field to indicate occurrences of
multiple faults of the same type (Table 9-1).

Errata 11/14/94, BWL

Faults types not listed in
correct order. Also,
OPERATION.UNALIG
NED is missing from the
list.
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9.6.3 Multiple Trace and Non-Trace Fault Conditions on the Same Instruction

The execution of a single instruction can create one or more trace fault conditions in addition to
multiple non-trace fault conditions. When this occurs, the processor generates at least two faults: a
non-trace fault and a trace fault.

The non-trace fault is handled first and the trace fault is triggered immediately after executing the
return instruction (ret) at the end of the non-trace fault handler.

9.6.4 Parallel Faults

The i960 Jx processor exploits the architecture’s tolerance of out-of-order instruction execution by
issuing instructions to independent execution units on the chip. The following subsections describe
how the processor handles faults in this environment.

9.6.5 Faults on Multiple Instructions Executed in Parallel

If AC.nif = 0, imprecise faults relative to different instructions executing in parallel may be
reported in a single parallel fault record and the processor calls a unique fault handler, the
PARALLEL fault handler (see section 9.9.4, “No Imprecise Faults (AC.nif) Bit” (pg. 9-20)). This
mechanism allows instructions that can fault to be executed in parallel with other instructions or
out of order. 

In parallel fault situations, the processor saves the fault type and subtype of the second and
subsequent faults detected in the optional section of the fault record. The fault handling procedure
for parallel faults can then analyze the fault record and handle the faults. The fault record for
parallel faults is described in the next section.

If the RIP is undefined for at least one of the faults found in the parallel fault record, then the RIP
of the parallel fault handler is undefined. In this case, the parallel fault handling procedure can
either create a RIP and return to it or call a debug monitor to analyze the faults.

If the RIP is defined for all faults found in the fault record, then it will point to the next instruction
not yet executed. The parallel fault handler can simply return to the next instruction not yet
executed with a ret instruction.

Consider the following code example, where the muli and the addi instructions both have overflow
conditions. AC.om = 0, AC.nif = 0, and both instructions are in the instruction cache at the time of
their execution. The addi and muli are allowed to execute in parallel because AC.nif = 0 and
because the faults that these instructions can potentially take (ARITHMETIC) are imprecise.

muli g2, g4, g6;

addi g8, g9, g10; # results in integer overflow
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The fault on the addi is detected before the fault on the muli because the muli takes longer to
execute. The fault call synchronizes faults on the way to the overflow fault handler for the addi
instruction (see section 9.9.5, “Controlling Fault Precision” (pg. 9-20)) which is when the muli
fault is detected. The processor builds a parallel fault record with information relative to both
faults and calls the parallel fault handler. In the fault handler, ARITHMETIC faults may be
recovered by storing the desired result of the instruction in the proper destination register and
setting the AC.of flag(optional) to indicate an overflow occurred. Then a ret at the end of the
parallel fault handler routine will return to the next instruction not yet executed in the program
flow.

On the i960 Jx processor, the muli overflow fault is the only fault that can happen with a delay.
Therefore, parallel fault records can report a maximum of 2 faults, one of which must be a muli
ARITHMETIC.INTEGER_OVERFLOW fault.

A parallel fault handler must be accessed through a system-supervisor call. Local and system-local
parallel fault handlers are not supported by the architecture and have an unpredictable behavior.
Tracing is disabled upon entry into the parallel fault handler (PC.te is cleared). It is restored upon
return from the handler. The parallel fault handler should not set PC.te to prevent infinite internal
loops.

9.6.6 Fault Record for Parallel Faults

Figure 9-3 shows the structure of the fault record for parallel faults.

To calculate byte offsets, “n” indicates the fault number. Thus, for the second fault recorded (n=2),
the relationship (NFP - 8- (n * 32)) reduces to NFP-72. For the i960 Jx processor, a maximum of
two faults are reported in the parallel fault record, and one of them must be the ARITH-
METIC.INTEGER_OVERFLOW fault on a muli instruction.

When multiple parallel faults occur, the processor selects one of the faults and records it in the first
16 bytes of the fault record as described in section 9.5.1, “Fault Record Description” (pg. 9-7). The
remaining parallel faults are written to the fault record’s optional section and the fault handling
procedure for parallel faults is invoked.

The OType/OSubtype word at NFP - 20 contains information about the parallel faults. The byte at
offset NFP-18 contains 00H (encoding for the PARALLEL fault type); the byte at NFP-20
contains the number of parallel faults. The optional section also contains a 32-byte parallel fault
record for each additional fault. These parallel fault records are stored incrementally in the fault
record starting at byte offset NFP-65. The fault record for each additional fault contains only the
fault type, fault subtype, address-of-faulting-instruction, and the optional fault section. (For
example, if two parallel faults occur, the fault record for the second fault is located from NFP - 96
to NFP - 65.)
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9.7 FAULT HANDLING PROCEDURES

The fault handling procedures can be located anywhere in the address space. Each procedure must
begin on a word boundary. The processor can execute the procedure in user mode or supervisor
mode, depending on the type of fault table entry.

9.7.1 Possible Fault Handling Procedure Actions

The processor allows easy recovery from many faults that occur. When fault recovery is possible,
the processor’s fault handling mechanism allows the processor to automatically resume work on
the program or interrupt pending when the fault occurred. Resumption is initiated with a ret
instruction in the fault handling procedure.

If recovery from the fault is not possible or not desirable, the fault handling procedure can take one
of the following actions, depending on the nature and severity of the fault condition (or conditions,
in the case of multiple faults):

• Return to a point in the program or interrupt code other than the point of the fault.

• Call a debug monitor.

• Explicitly write the processor state and fault record into memory and perform processor or
system shutdown.

• Perform processor or system shutdown without explicitly saving the processor state or fault
information.

When working with the processor at the development level, a common fault handling procedure
action is to save the fault and processor state information and make a call to a debugging device
such as a debugging monitor. This device can then be used to analyze the fault information.

9.7.2 Program Resumption Following a Fault

Because of the wide variety of faults, they can occur at different times with respect to the faulting
instruction:

• Before execution of the faulting instruction (e.g. fetch from on-chip RAM)

• During instruction execution (e.g. integer overflow)

• Immediately following execution (e.g. trace)

When the fault occurs before the faulting instruction is executed, the faulting instruction may be re-
executed upon return from the fault handling procedure. 
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When a fault occurs during or after execution of the faulting instruction, the fault may be
accompanied by a program state change such that program execution cannot be resumed after the
fault is handled. For example, when an integer overflow fault occurs, the overflow value is stored
in the destination. If the destination register is the same as one of the source registers, the source
value is lost, making it impossible to re-execute the faulting instruction.

In general, resumption of program execution with no changes in the program’s control flow is
possible with the following fault types or subtypes:

Resumption of the program may or may not be possible with the following fault subtype:

• ARITHMETIC.INTEGER_OVERFLOW

The effect of specific fault types on a program is defined in section 9.11, “FAULT REFERENCE”
(pg. 9-21) under the heading Program State Changes.

9.7.3 Return Instruction Pointer (RIP)

When a fault handling procedure is called, a Return Instruction Pointer (RIP) is saved in the image
of the RIP in the faulting frame. The RIP can be accessed at address pfp+8 while executing the
fault handler after a flushreg. The RIP in the previous frame points to an instruction where
program execution can be resumed with no break in the program’s control flow. It generally points
to the faulting instruction or to the next instruction to be executed. In some instances, however, the
RIP is undefined. RIP content for each fault is described in section 9.11, “FAULT REFERENCE”
(pg. 9-21).

9.7.4 Returning to the Point in the Program Where the Fault Occurred

As described in section 9.7.2, “Program Resumption Following a Fault” (pg. 9-13), most faults can
be handled such that program control flow is not affected. In this case, the processor allows a
program to be resumed at the point where the fault occurred, following a return from a fault
handling procedure (initiated with a ret instruction). The resumption mechanism used here is
similar to that provided for returning from an interrupt handler.

The fault handling procedure should be executed in supervisor mode (either by using a supervisor
call or by running the program in supervisor mode) for the PC register to be restored from the fault
record upon return from the fault handler. (See the pseudocode in section 6.2.54, “ret” (pg. 6-91)).

• All OPERATION Subtypes • ARITHMETIC.ZERO_DIVIDE

• All CONSTRAINT Subtypes • All TRACE Subtypes

• PROTECTION.LENGTH
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9.7.5 Returning to a Point in the Program Other Than Where the Fault 
Occurred

A fault handling procedure can also return to a point in the program other than where the fault
occurred. To do this, the fault procedure must alter the RIP.

To perform a return from a fault handling procedure to an alternate point in the program
predictably, the fault handling procedure should perform the following steps:

1. Flush the local register sets to the stack with a flushreg instruction.

2. Modify the RIP in the previous frame.

3. Clear the trace-fault-pending flag in the fault record’s process controls field before the return
(optional).

4. Execute a return with the ret instruction.

Use this technique carefully and only in situations where the fault handling procedure is closely
coupled with the application program. 

9.7.6 Fault Controls

For certain fault types and subtypes the processor employs register mask bits or flags that
determine whether or not a fault is generated when a fault condition occurs. Table 9-2 summarizes
these flags and masks, the data structures in which they are located, and the fault subtypes they
affect.

The integer overflow mask bit inhibits the generation of integer overflow faults. The use of this
mask is discussed in section 9.11, “FAULT REFERENCE” (pg. 9-21).

The no imprecise faults (NIF) bit controls the synchronizing of faults for a category of faults called
imprecise faults. The function of this bit is described in section 9.9, “PRECISE AND IMPRECISE
FAULTS” (pg. 9-19).
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TC register trace mode bits and the PC register trace enable bit support trace faults. Trace mode
bits enable trace modes; the trace enable bit enables trace fault generation. The use of these bits is
described in the trace faults description in section 9.11, “FAULT REFERENCE” (pg. 9-21).
Further discussion of these flags is provided in CHAPTER 10, TRACING AND DEBUGGING.

The unaligned fault mask bit is located in the process control block (PRCB), which is read during
initialization. It controls whether unaligned memory accesses generate a fault. See section 15.2.5,
“Data Alignment” (pg. 15-22).

9.8 FAULT HANDLING ACTION

Once a fault occurs, the processor saves the program state, calls the fault handling procedure and
— when the fault recovery action completes — restores the program state (if possible). No
software other than the fault handling procedures is required to support this activity.

Three types of implicit procedure calls can be used to invoke the fault handling procedure
according to the information in the selected fault table entry: a local call, a system-local call and a
system-supervisor call.

The following subsections describe actions the processor takes while handling faults. It is not
necessary to read these sections to use the fault handling mechanism or to write a fault handling
procedure. This discussion is provided for those readers who wish to know the details of the fault
handling mechanism.

Table 9-2.  Fault Flags or Masks

Flag or Mask Name Location Faults Affected

Integer Overflow Mask Bit Arithmetic Controls (AC) Register INTEGER_OVERFLOW

No Imprecise Faults Bit Arithmetic Controls (AC) Register All Imprecise Faults

Trace Enable Bit Process Controls (PC) Register All TRACE Faults

Trace Mode Trace Controls (TC) Register
All TRACE Faults except 
hardware breakpoint traces 
and fmark

Unaligned Fault Mask Process Control Block (PRCB) UNALIGNED Fault
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9.8.1 Local Fault Call

When the selected fault handler entry in the fault table is an entry type 002 (local procedure), the
processor operates as described in section 7.1.3.1, “Call Operation” (pg. 7-7), with the following
exceptions:

• A new frame is created on the stack that the processor is currently using. The stack can be the
user stack, supervisor stack or interrupt stack.

• The fault record is copied into the area allocated for it in the stack, beginning at NFP-1. (See
Figure 9-4.)

• The processor gets the IP for the first instruction in the called fault handling procedure from
the fault table.

• The processor stores the fault return code (0012) in the PFP return type field.

If the fault handling procedure is not able to perform a recovery action, it performs one of the
actions described in section 9.7.2, “Program Resumption Following a Fault” (pg. 9-13).

If the handler action results in recovery from the fault, a ret instruction in the fault handling
procedure allows processor control to return to the program that was pending when the fault
occurred. Upon return, the processor performs the action described in section 7.1.3.3, “Return
Operation” (pg. 7-8), except that the arithmetic controls field from the fault record is copied into
the AC register. If the processor is in user mode before execution of the return, the process controls
field from the fault record is not copied back to the PC register.

9.8.2 System-Local Fault Call

When the fault handler selects an entry for a local procedure in the system procedure table (entry
type 102), the processor performs the same action as is described in the previous section for a local
fault call or return. The only difference is that the processor gets the fault handling procedure's
address from the system procedure table rather than from the fault table. 

9.8.3 System-Supervisor Fault Call

When the fault handler selects an entry for a supervisor procedure in the system procedure table,
the processor performs the same action described in section 7.1.3.1, “Call Operation” (pg. 7-7),
with the following exceptions:

• If the fault occurs while in user mode, the processor switches to supervisor mode, reads the
supervisor stack pointer from the system procedure table and switches to the supervisor stack.
A new frame is then created on the supervisor stack.
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• If the fault occurs while in supervisor mode, the processor creates a new frame on the current
stack. If the processor is executing a supervisor procedure when the fault occurred, the current
stack is the supervisor stack; if it is executing an interrupt handler procedure, the current stack
is the interrupt stack. (The processor switches to supervisor mode when handling interrupts.)

• The fault record is copied into the area allocated for it in the new stack frame, beginning at
NFP-1. (See Figure 9-4.)

• The processor gets the IP for the first instruction of the fault handling procedure from the
system procedure table (using the index provided in the fault table entry).

• The processor stores the fault return code (0012) in the PFP register return type field. If the
fault is not a trace, parallel or override fault, it copies the state of the system procedure table
trace control flag (byte 12, bit 0) into the PC register trace enable bit. If the fault is a trace,
parallel or override fault, the trace enable bit is cleared. 

On a return from the fault handling procedure, the processor performs the action described in
section 7.1.3.3, “Return Operation” (pg. 7-8) with the addition of the following:

• The fault record arithmetic controls field is copied into the AC register. 

• If the processor is in supervisor mode prior to the return from the fault handling procedure
(which it should be), the fault record process controls field is copied into the PC register. The
mode is then switched back to user, if it was in user mode before the call. 

• The processor switches back to the stack it was using when the fault occurred. (If the
processor was in user mode when the fault occurred, this operation causes a switch from the
supervisor stack to the user stack.)

• If the trace-fault-pending flag and trace enable bit are set in the PC field of the fault record,
the trace fault on the instruction at the origin of the supervisor fault call is handled at this time.

PC register restoration causes any changes to the process controls caused by the fault handling
procedure to be lost.

9.8.4 Faults and Interrupts

If an interrupt occurs during: 

• An instruction that will fault; or

• An instruction that has already faulted; or 

• Fault handling procedure selection

The processor handles the interrupt in the following way: It completes the selection of the fault
handling procedure, creates the fault record and then services the interrupt just prior to executing
the first instruction of the fault handling procedure. The fault is handled upon return from the
interrupt. Handling the interrupt before the fault reduces interrupt latency.
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9.9 PRECISE AND IMPRECISE FAULTS

As described in section 9.11.5, “PARALLEL Faults” (pg. 9-29), the i960 architecture — to support
parallel and out-of-order instruction execution — allows some faults to be generated together.

The processor provides two mechanisms for controlling the circumstances under which faults are
generated: the AC register no-imprecise-faults bit (AC.nif bit) and the instructions that synchronize
faults. See section 9.9.5, “Controlling Fault Precision” (pg. 9-20) for more information. Faults are
categorized as precise, imprecise and asynchronous. The following subsections describe each.

9.9.1 Precise Faults

A fault is precise if it meets all of the following conditions:

• The faulting instruction is the earliest instruction in instruction issue order to generate a fault.

• All instructions before the faulting instruction, in instruction issue order, have completed
successfully with no unreported faults.

• All instructions after the faulting instruction, in instruction issue order, are ensured not to have
executed.

The faults that are always precise are:

• TRACE

• PROTECTION

9.9.2 Imprecise Faults

Faults that do not meet all of the requirements for precise faults are considered imprecise. For
imprecise faults, the state of execution of instructions surrounding the faulting instruction may be
unpredictable. When instructions are executed out-of-order and an imprecise fault occurs, it may
not be possible to access the source operands of the instruction. This is because they may have
been modified by subsequent instructions executed out-of-order. However, the RIP of some
imprecise faults (e.g. ARITHMETIC) points to the next instruction that has not yet executed and
guarantees the return from the fault handler to the original flow of execution. Faults that the archi-
tecture allows to be imprecise are:

• OPERATION

• CONSTRAINT

• ARITHMETIC

• TYPE



FAULTS

9-20

9.9.3 Asynchronous Faults

Asynchronous faults are those whose occurrence has no direct relationship to the instruction
pointer. This group includes MACHINE faults, which are not implemented on the 80960Jx. 

9.9.4 No Imprecise Faults (AC.nif) Bit

The AC.nif bit controls imprecise fault generation. If AC.nif is set, all faults generated are precise.
If AC.nif is clear, several imprecise faults may be reported together in a parallel fault record.
Precise faults can never be found in parallel fault records, thus only more than one imprecise fault
occurring concurrently with AC.nif = 0 can produce a parallel fault.

Compiled code should execute with the AC.nif bit clear, using syncf where necessary to ensure
that faults occur in order. In this mode, imprecise faults are considered to be catastrophic errors
from which recovery is not needed. This also allows the processor to take advantage of internal
pipelining which can speed up processing time. When only precise faults are allowed, the
processor must restrict the use of pipelining to prevent imprecise faults.

The NIF bit should be set if recovery from one or more imprecise faults is required. For example,
the NIF bit should be set if a program needs to handle — and recover from — unmasked integer-
overflow faults and the fault handling procedure cannot be closely coupled with the application to
perform imprecise fault recovery.

9.9.5 Controlling Fault Precision

The syncf instruction forces the processor to complete execution of all instructions that occur
prior to syncf and to generate all faults before it begins work on instructions that occur after
syncf. This instruction has two uses:

• It forces faults to be precise when the NIF bit is clear.

• It ensures that all instructions are complete and all faults are generated in one block of code
before executing another block of code.

In addition to the syncf instruction, an implicit fault synchronization is performed at the beginning
of the following instructions or operations:

• Call and Return Operations including call, callx, calls, and ret instructions, plus the implicit
interrupt and fault call operations.

• Atomic Operations including atadd and atmod.
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9.10 FAULTS WITHIN A FAULT HANDLER

The architecture provides for graceful degradation in situations where faults occur while
attempting to perform the action defined for a previous fault (i.e., from the time the first fault was
detected until the time that the call to its fault handler completes). The first such successive fault is
called an override, and results in a different fault handler being selected. The second such
successive fault is called a system error.

9.10.1 Overrides

If a second fault occurs while storing a fault record for a previous fault or in invoking the fault
handler, and the previous fault is not for an override or parallel fault condition, an override is said
to occur.

This is similar to normal fault-handler invocation, with the following exceptions. The fault record
describes the first fault as described previously. Field OType contains the fault type of the second
fault, field OSubtype contains the fault subtype of the second fault and field override-fault-data
contains what would normally be the fault data field for the second fault type. Rather than selecting
the fault handler corresponding to the first or second fault types, the override fault handler is
selected. 

When an override condition does not occur, these fields in the fault record have no defined value,
except for the OType/OSubtype fields (see section 9.5.1, “Fault Record Description” (pg. 9-7).

An override fault handler must be accessed through a system-supervisor call. Local and system-
local override fault handlers are not supported by the architecture and have an unpredictable
behavior. Tracing is disabled upon entry into the override fault handler (PC.te is cleared). It is
restored upon return from the handler. To prevent infinite internal loops, the override fault handler
should set PC.te.

9.10.2 System Error

A system error occurs when a fault condition is detected while servicing an override or a parallel
fault. This type of error causes the processor to enter a system error state. In this state, the
processor indefinitely sends an error message on the address bus, while asserting the FAIL pin.
Refer to section 11.2.2.3, “The Fail Pin (FAIL)” (pg. 11-7) for more information on system error
conditions.

9.11 FAULT REFERENCE

This section describes each fault type and subtype and gives detailed information about what is
stored in the various fields of the fault record. The section is organized alphabetically by fault type.
The following paragraphs describe the information that is provided for each fault type.
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Fault Type: Gives the number that appears in the fault record fault-type field
when the fault is generated. 

Fault Subtype: Lists the fault subtypes and the number associated with each fault
subtype.

Function: Describes the purpose and handling of the fault type and each
subtype. The error message takes the form of the dummy address
0xFEFFFF68.

RIP: Describes the value saved in the image of the RIP register in the
stack frame that the processor was using when the fault occurred. In
the RIP definitions, “next instruction” refers to the instruction
directly after the faulting instruction or to an instruction to which
the processor can logically return when resuming program
execution.

Note that the discussions of many fault types specify that the RIP
contains the address of the instruction that would have executed
next had the fault not occurred. Since some implementations may
choose to execute instructions out of order when this can be done
transparently, the RIP need not necessarily point to the instruction
immediately following (in an execution-order sense); it may point
elsewhere in the instruction stream. However, it must point to a spot
at which execution can be resumed correctly if one wants to resume
execution after the fault, and thus the implementation cannot
execute out-of-order any instructions subsequent to the faulting
instruction that are dependant on any result of the faulting
instruction.

Fault IP: Describes the contents of the fault record’s fault instruction pointer
field, typically the faulting instruction’s IP.

Fault Data: Describes any values stored in the fault record’s fault data field.

Class: Indicates if a fault is precise or imprecise.

Program State Changes: Describes the process state changes that would prevent re-executing
the faulting instruction if applicable.

Trace Reporting: Relates whether a trace fault (other than PRERET) can be detected
on the faulting instruction, also if and when the fault is serviced.

Notes: Additional information specific to particular implementations of the
i960 architecture.
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9.11.1 ARITHMETIC Faults

Fault Type: 3H

Fault Subtype: Number Name
0H Reserved
1H INTEGER_OVERFLOW
2H ZERO_DIVIDE
3H-FH Reserved

Function: Indicates a problem with an operand or the result of an arithmetic
instruction. An INTEGER.OVERFLOW fault is generated when the
result of an integer instruction overflows its destination and the AC
register integer overflow mask is cleared. Here, the result’s n least
significant bits are stored in the destination, where n is destination
size. Instructions that generate this fault are:

An ARITHMETIC.ZERO_DIVIDE fault is generated when the
divisor operand of an ordinal- or integer-divide instruction is zero.
Instructions that generate this fault are:

RIP: IP of the instruction that would have executed next if the fault had
not occurred.

Fault IP: IP of the faulting instruction.

Class: Imprecise.

Program State Changes: Faults may be imprecise when executing with the NIF bit cleared.
An INTEGER.OVERFLOW and ZERO_DIVIDE faults may not be
recoverable because the result is stored in the destination before the
fault is generated; (e.g., the faulting instruction cannot be re-
executed if the destination register was also a source register for the
instruction). 

Trace Reporting: The trace is reported upon return from the Arithmetic fault handler.

addi subi stis

stib shli ADDI<cc>

muli divi SUBI<cc>

divo divi

ediv remi

remo modi
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9.11.2 CONSTRAINT Faults

Fault Type: 5H

Fault Subtype: Number Name
0H Reserved
1H RANGE
2H-FH Reserved

Function: Indicates the program or procedure violated an architectural
constraint.

A CONSTRAINT.RANGE fault is generated when a FAULT<cc>
instruction is executed and the AC register condition code field
matches the condition required by the instruction.

RIP: No defined value.

Fault IP: Faulting Instruction.

Class: Imprecise.

Program State Changes: These faults may be imprecise when executing with the NIF bit
cleared. No changes in the program’s control flow accompany these
faults. A CONSTRAINT.RANGE fault is generated after the fault-
if instruction executes. The program state is not affected. 

Trace Reporting: Serviced upon return from the Constraint fault handler.



FAULTS

9-25

9

9.11.3 OPERATION Faults

Fault Type: 2H

Fault Subtype: Number Name
0H Reserved
1H INVALID_OPCODE
2H UNIMPLEMENTED
3H UNALIGNED
4H INVALID_OPERAND
5H - FH Reserved

Function: Indicates the processor cannot execute the current instruction
because of invalid instruction syntax or operand semantics. 

An INVALID_OPCODE fault is generated when the processor
attempts to execute an instruction containing an undefined opcode
or addressing mode. 

An UNIMPLEMENTED fault is generated when the processor
attempts to execute an instruction fetched from on-chip data RAM,
or when a non-word or unaligned access to a memory-mapped
region is performed, or when attempting to write memory-mapped
region 0xFF0084XX when not granted.

An UNALIGNED fault is generated when the following conditions
are present: (1) the processor attempts to access an unaligned word
or group of words in non-MMR memory; and (2) the fault is enabled
by the unaligned-fault mask bit in the PRCB fault configuration
word. 

An INVALID_OPERAND fault is generated when the processor
attempts to execute an instruction that has one or more operands
having special requirements that are not satisfied. This fault is
generated when specifying a non-defined sysctl, icctl, dcctl or
intctl command, or referencing an unaligned long-, triple- or quad-
register group, or by referencing an undefined register, or by writing
to the RIP register(r2).

RIP: No defined value.

Fault IP: Address of the faulting instruction.

Fault Data: When an UNALIGNED fault is signaled, the effective address of
the unaligned access is placed in the fault record’s optional data
section, beginning at address NFP-24. This address is useful to
debug a program that is making unintentional unaligned accesses.

Class: Imprecise.
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Program State Changes: For the INVALID_OPCODE and UNIMPLEMENTED (case: store
to MMR), the destination of the faulting instruction is not modified.
(For the UNALIGNED fault, the memory operation completes
correctly before the fault is reported.) In all other cases, the
destination is undefined.

Trace Reporting: The trace event is lost.

Notes: OPERATION.UNALIGNED fault is not implemented on i960 Kx
and Sx CPUs.
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9.11.4 OVERRIDE Faults

Fault Type: Fault table entry = 0H
Fault type in fault record = fault type of the program instruction that
faulted.

Fault Subtype: Fault subtype of the program instruction that faulted.

Fault OType: Fault type of the additional fault detected while attempting to
deliver the program fault.

Fault OSubtype: Fault Subtype of the additional fault detected while attempting to
deliver the program fault.

Function: The override fault handler must be accessed through a system-
supervisor call. Local and system-local override fault handlers are
not supported by the architecture and have an unpredictable
behavior. Tracing is disabled upon entry into the override fault
handler (PC.te is cleared). It is restored upon return from the
handler. To prevent infinite internal loops, the override fault handler
should not set PC.te.

Trace Reporting: Same behavior as if the override condition had not existed. Refer to
the description of the original program fault.
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9.11.5 PARALLEL Faults

Fault Type: Fault table entry = 0H
Fault type in fault record = fault type of one of the parallel faults.

Fault Subtype: Fault subtype of one of the parallel faults.

Fault OType: 0H

Fault OSubtype: Number of parallel faults.

Function: See section 9.6.4, “Parallel Faults” (pg. 9-11) for a complete
description of parallel faults. When the AC.nif bit in the arithmetic
controls is zero, the architecture permits the implementation to
execute instructions in parallel and out-of-order by different
execution units. When an imprecise fault occurs in any of these
units, it is not possible to stop the execution of those instructions
after the faulting instruction. It is also possible that more than one
fault is detected from different instructions almost at the same time.

When there is more than one outstanding fault at the point when all
execution units terminate, a parallel fault situation arises. The fault
record of parallel faults contains the fault information of all the
faults that occurred in parallel. The size of the fault record is
variable and depends on the number of parallel faults. The
maximum size of the fault record is implementation dependent and
depends on the number of parallel and pipeline execution units in
the specific implementation.

The parallel fault handler must be accessed through a system-
supervisor call. Local and system-local parallel fault handlers are
not supported by the architecture and have an unpredictable
behavior. Tracing is disabled upon entry into the parallel fault
handler (PC.te is cleared). It is restored upon return from the
handler. The parallel fault handler should not set PC.te to prevent
infinite internal loops.

RIP: If all of the parallel fault types allow a RIP to be defined, the RIP is
the next instruction in the flow of execution, otherwise it is
undefined.

Fault IP: IP of one of the faulting instructions.

Class: Imprecise.

Program State Changes: State changes associated with all the parallel faults.

Trace Reporting: Same behavior as if the override condition had not existed. Refer to
the description of the original program fault.
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9.11.6 PROTECTION Faults

Fault Type: 7H

Function: Number Name
Bit 0 Reserved
Bit 1 LENGTH
Bits 2-7 Reserved

Indicates that a program or procedure is attempting to perform an
illegal operation that the architecture protects against.

A PROTECTION.LENGTH fault is generated when the index
operand used in a calls instruction points to an entry beyond the
extent of the system procedure table.

RIP: IP of the faulting instruction.

Fault IP: IP of the faulting instruction.

Class: Precise.

Program State Changes: None. The instruction does not execute.

Trace Reporting: The trace event is lost.
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9.11.7 TRACE Faults

Fault Type: 1H

Fault Subtype: Number Name
Bit 0 Reserved
Bit 1 INSTRUCTION 
Bit 2 BRANCH 
Bit 3 CALL 
Bit 4 RETURN 
Bit 5 PRERETURN 
Bit 6 SUPERVISOR 
Bit 7 MARK 

Function: Indicates the processor detected one or more trace events. The event
tracing mechanism is described in CHAPTER 10, TRACING AND
DEBUGGING.

A trace event is the occurrence of a particular instruction or
instruction type in the instruction stream. The processor recognizes
seven different trace events: instruction, branch, call, return,
prereturn, supervisor, mark. It detects these events only if the TC
register mode bit is set for the event. If the PC register trace enable
bit is also set, the processor generates a fault when a trace event is
detected.

A TRACE fault is generated following the instruction that causes a
trace event (or prior to the instruction for the prereturn trace event).
The following trace modes are available:

INSTRUCTION Generates a trace event following every
instruction.

BRANCH Generates a trace event following any branch
instruction when the branch is taken (a branch
trace event does not occur on branch-and-link or
call instructions).

CALL Generates a trace event following any call or
branch-and-link instruction or an implicit fault
call.

RETURN Generates a trace event following a ret.

PRERETURN Generates a trace event prior to any ret
instruction, providing the PFP register prereturn
trace flag is set (the processor sets the flag
automatically when a call trace is serviced.) A
prereturn trace fault is always generated alone.
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SUPERVISOR Generates a trace event following any calls
instruction that references a supervisor
procedure entry in the system procedure table
and on a return from a supervisor procedure
where the return status type in the PFP register
is 0102 or 0112.

MARK Generates a trace event following the mark
instruction. The MARK fault subtype bit,
however, is used to indicate a match of the
instruction-address breakpoint register or the
data-address breakpoint register as well as the
fmark and mark instructions.

TRACE fault subtype bit is associated with each mode. Multiple
fault subtypes can occur simultaneously; all trace fault conditions
detected on one instruction (except prereturn) are reported in one
single trace fault, with the fault subtype bit set for each subtype that
occurs. The prereturn trace is always reported alone.

When a fault type other than a TRACE fault is generated during
execution of an instruction that causes a trace event, the non-trace
fault is handled before the trace fault. An exception is the prereturn-
trace fault, which occurs before the processor detects a non-trace
fault and is handled first.

Similarly, if an interrupt occurs during an instruction that causes a
trace event, the interrupt is serviced before the TRACE fault is
handled. Again, the TRACE.PRERETURN fault is an exception.
Since it is generated before the instruction, it is handled before any
interrupt that occurs during instruction execution.

A trace fault handler must be accessed through a system-supervisor
call (it must be a supervisor procedure in the system procedure
table). Local and system-local trace fault handlers are not supported
by the architecture and may have unpredictable behavior. Tracing is
automatically disabled when entering the trace fault handler and is
restored upon return from the trace fault handler. The trace fault
handler should not modify PC.te.

RIP: Instruction immediately following the instruction traced, in
instruction issue order, except for PRERETURN. For
PRERETURN, the RIP is the return instruction traced.

Fault IP: IP of the faulting instruction for all except prereturn trace and call
trace (on implicit fault calls), for which the fault IP field is
undefined.
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Class: Precise.

Program State Changes: All trace faults except PRERETURN are serviced after the
execution of the faulting instruction. The processor returns to the
instruction immediately following the instruction traced, in
instruction issue order. For PRERETURN, the return is traced
before it executes. The processor re-executes the return instruction
after completion of the PRERETURN trace fault handler.
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9.11.8 TYPE Faults

Fault Type: AH

Fault Subtype: Number Name
0H Reserved
1H MISMATCH
2H-FH Reserved

Function: Indicates a program or procedure attempted to perform an illegal
operation on an architecture-defined data type or a typed data
structure. 

A TYPE.MISMATCH fault is generated when attempts are made to:

• Execute a privileged (supervisor-mode only) instruction while
the processor is in user mode. Privileged instructions on the
i960 Jx processor are:

• Write to on-chip data RAM while the processor is in
supervisor-only write mode and BCON.irp is set. See Figure
12-3. 

• Write to the first 64 bytes of on-chip data RAM while the
processor is in either user or supervisor mode and BCON.sirp is
set. See Figure 12-3.

• Write to memory-mapped registers in supervisor space from
user mode.

• Write to timer registers while in user mode, when timer
registers are protected against user-mode writes.

RIP: No defined value.

Fault IP: IP of the faulting instruction.

Class: Imprecise.

Program State Changes: The fault happens before execution of the instruction. The machine
state is not changed.

Trace Reporting: The trace event is lost.

modpc dcctl

halt intctl

sysctl inten

icctl intdis
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CHAPTER 10
TRACING AND DEBUGGING

This chapter describes the i960® Jx processor’s facilities for runtime activity monitoring. The i960
architecture provides facilities for monitoring processor activity through trace event generation. A
trace event indicates a condition where the processor has just completed executing a particular
instruction or a type of instruction or where the processor is about to execute a particular
instruction. When the processor detects a trace event, it generates a trace fault and makes an
implicit call to the fault handling procedure for trace faults. This procedure can, in turn, call
debugging software to display or analyze the processor state when the trace event occurred. This
analysis can be used to locate software or hardware bugs or for general system monitoring during
program development.

Tracing is enabled by the process controls (PC) register trace enable bit and a set of trace mode bits
in the trace controls (TC) register. Alternatively, the mark and fmark instructions can be used to
generate trace events explicitly in the instruction stream.

The i960 Jx processor also provides four hardware breakpoint registers that generate trace events
and trace faults. Two registers are dedicated to trapping on instruction execution addresses, while
the remaining two registers can trap on the addresses of various types of data accesses.

10.1 TRACE CONTROLS

To use the architecture’s tracing facilities, software must provide trace fault handling procedures,
perhaps interfaced with a debugging monitor. Software must also manipulate the following
registers and control bits to enable the various tracing modes and enable or disable tracing in
general.

These controls are described in the following subsections.

• TC register mode bits • PC register trace enable bit

• DAB0-DAB1 registers’ address field and 
enable bit (in the control table)

• PFP register return status field prereturn trace 
flag (bit 3)

• System procedure table supervisor-stack-
pointer field trace control bit

• BPCON register breakpoint mode bits and 
enable bits (in the control table)

• IPB0-IPB1 registers’ address field 
(in the control table)



TRACING AND DEBUGGING

10-2

10.1.1 Trace Controls (TC) Register

The TC register (Figure 10-1) allows software to define conditions that generate trace events. 

Figure 10-1.  Trace Controls (TC) Register

The TC register contains mode bits and event flags. Mode bits define a set of tracing conditions
that the processor can detect. For example, when the call-trace mode bit is set, the processor
generates a trace event when a call or branch-and-link operation executes. See section 10.2 (pg.
10-3). The processor uses event flags to monitor which breakpoint trace events are generated.

A special instruction, modify-trace-controls (modtc), allows software to modify the TC register.
On initialization, the TC register is read from the Control Table. modtc can then be used to set or
clear trace mode bits as required. Updating TC mode bits may take up to four non-branching
instructions to take effect. Software can access the breakpoint event flags using modtc. The
processor automatically sets and clears these flags as part of its trace handling mechanism: the
breakpoint event corresponding to the trace being serviced is set in the TC while servicing a
breakpoint trace fault; the TC event flags are cleared upon return from the trace fault handler.
When not in a trace fault handler, or when the trace is not for breakpoints, the TC event bits are
clear. TC register bits 0, 8 through 23 and 28 through 31 are reserved. Software must initialize
these bits to zero and cannot modify them afterwards.
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10.1.2 PC Trace Enable Bit and Trace-Fault-Pending Flag

The PC register trace enable bit and the trace-fault-pending flag in the PC field of the fault record
control tracing. The trace enable bit enables the processor’s tracing facilities; when set, the
processor generates trace faults on all trace events.

Typically, software selects the trace modes to be used through the TC register. It then sets the trace
enable bit to begin tracing. This bit is also altered as part of some call and return operations that the
processor performs as described in section 10.5.2, “Tracing on Calls and Returns” (pg. 10-12).

The update of PC.te through modpc may take up to four non-branching instructions to take effect.
The update of PC.te through call and return operations is immediate.

The trace-fault-pending flag, in the PC field of the fault record, allows the processor to remember
to service a trace fault when a trace event is detected at the same time as another event (e.g., non-
trace fault, interrupt). The non-trace fault event is serviced before the trace fault, and depending on
the event type and execution mode, the trace fault pending flag in the PC field of the fault record
may be used to generate a fault upon return from the non-trace fault event (see section 10.5.2.4,
“Tracing on Return from Implicit Call: Fault Case” (pg. 10-14)).

10.2 TRACE MODES

This section defines trace modes enabled through the TC register. These modes can be enabled
individually or several modes can be enabled at once. Some modes overlap, such as call-trace
mode and supervisor-trace mode.

See section 10.4, “HANDLING MULTIPLE TRACE EVENTS” (pg. 10-11) for a description of
processor function when multiple trace events occur.

10.2.1 Instruction Trace

When the instruction-trace mode is enabled in TC (TC.i = 1) and tracing is enabled in PC
(PC.te = 1), the processor generates an instruction-trace fault immediately after an instruction is
executed. A debug monitor can use this mode (TC.i = 1, PC.te = 1) to single-step the processor.

• Instruction trace • Branch trace • Mark trace • Prereturn trace

• Call trace • Return trace • Supervisor trace
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10.2.2 Branch Trace

When the branch-trace mode is enabled in TC (TC.b = 1) and PC.te is set, the processor generates
a branch-trace fault immediately after a branch instruction executes, if the branch is taken. A
branch-trace event is not generated for conditional-branch instructions that do not branch, branch-
and-link instructions, and call-and-return instructions.

10.2.3 Call Trace

When the call-trace mode is enabled in TC (TC.c = 1) and PC.te is set after the call, the processor
generates a call-trace fault when a call instruction (call, callx or calls) or a branch-and-link
instruction (bal or balx) executes. See section 10.5.2.1, “Tracing on Explicit Call” (pg. 10-12) for
a detailed description of call tracing on explicit instructions. Interrupt calls are never traced.

An implicit call to a fault handler also generates a call trace if TC.c and PC.te are set after the call.
Refer to section 10.5.2.2, “Tracing on Implicit Call” (pg. 10-13) for a complete description of this
case.

When the processor services a trace fault, it sets the prereturn-trace flag (PFP register bit 3) in the
new frame created by the call operation or in the current frame if a branch-and-link operation was
performed. The processor uses this flag to determine whether or not to signal a prereturn-trace
event on a ret instruction.

10.2.4 Return Trace

When the return-trace mode is enabled in TC and PC.te is set after the return instruction, the
processor generates a return-trace fault for a return from explicit call (PFP.rrr = 000 or
PFP.rrr = 01x). See section 10.5.2.3, “Tracing on Return from Explicit Call” (pg. 10-14).

A return from fault may be traced and a return from interrupt is not. See section 10.5.2.4, “Tracing
on Return from Implicit Call: Fault Case” (pg. 10-14) and section 10.5.2.5, “Tracing on Return
from Implicit Call: Interrupt Case” (pg. 10-15) for details.

10.2.5 Prereturn Trace

When the TC prereturn-trace mode, the PC.te, and the PFP prereturn-trace flag (PFP.p) are set, the
processor generates a prereturn-trace fault prior to executing a ret execution. The dependence on
PFP.p implies that prereturn tracing cannot be used without enabling call tracing. The processor
sets PFP.p whenever it services a call-trace fault (as described above) for call-trace mode. 
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If another trace event occurs at the same time as the prereturn-trace event, the processor generates
a fault on the non-prereturn-trace event first. Then, on a return from that fault handler, it generates
a fault on the prereturn-trace event. The prereturn trace is the only trace event that can cause two
successive trace faults to be generated between instruction boundaries.

10.2.6 Supervisor Trace

When supervisor-trace mode is enabled in TC and PC.te is set, the processor generates a
supervisor-trace fault after both of the following:

• A call-system instruction (calls) executes from user mode and the procedure table entry is for
a system-supervisor call.

• A ret instruction executes from supervisor mode and the return-type field is set to 0102 or 0112
(i.e., return from calls).

This trace mode allows a debugging program to determine kernel-procedure call boundaries within
the instruction stream. 

10.2.7 Mark Trace

Mark trace mode allows trace faults to be generated at places other than those specified with the
other trace modes, using the mark instruction. It should be noted that the MARK fault subtype bit
in the fault record is used to indicate a match of the instruction-address breakpoint registers or the
data-address breakpoint registers as well as the fmark and mark instructions.

10.2.7.1 Software Breakpoints

mark and fmark allow breakpoint trace faults to be generated at specific points in the instruction
stream. When mark trace mode is enabled and PC.te is set, the processor generates a mark trace
fault any time it encounters a mark instruction. fmark causes the processor to generate a mark trace
fault regardless of whether or not mark trace mode is enabled, provided PC.te is set. If PC.te is
clear, mark and fmark behave like no-ops.

10.2.7.2 Hardware Breakpoints

The hardware breakpoint registers are provided to enable generation of trace faults on instruction
execution and data access.

The i960 Jx microprocessor implements two instruction and two data address breakpoint registers,
denoted IBP0, IBP1, DAB0, and DAB1. The instruction and data address breakpoint registers are
32-bit registers. The instruction breakpoint registers cause a break after execution of the target
instruction. The DABx registers cause a break after the memory access has been issued to the bus
controller.
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Hardware breakpoint registers may be armed or disarmed. When armed, hardware breakpoints can
generate an architectural trace fault. When the registers are disarmed, no action occurs, and
execution continues normally. Since instructions are always word aligned, the two low-order bits
of the IBPx registers act as control bits. Control bits for the DABx registers reside in the
Breakpoint Control (BPCON) register. BPCON enables the data address breakpoint registers, and
sets the specific modes of these registers. Hardware breakpoints are globally enabled by the
process controls trace enable bit (PC.te).

The IBPx, DABx, and BPCON registers may be accessed using normal load and store instructions
(except for loads from IBPx register). The application must be in supervisor mode for a legal
access to occur. See Section 3.3, MEMORY-MAPPED CONTROL REGISTERS (pg. 3-5) for
more information on the address for each register.

Well behaved applications must request modification rights to the hardware breakpoint resources,
before attempting to modify these resources. Rights are requested by executing the sysctl
instruction, as described in the following section.

10.2.7.3 Requesting Modification Rights to Hardware Breakpoint Resources

Application code must always first request and acquire modification rights to the hardware
breakpoint resources before any attempt is made to modify them. This mechanism is employed to
eliminate simultaneous usage of breakpoint resources by emulation tools and application code. An
emulation tool exercises supervisor control over breakpoint resource allocation. If the emulator
retains control of breakpoint resources, none are available for application code. If an emulation
tool is not being used in conjunction with the device, modification rights to breakpoint resources
will be granted to the application. The emulation tool may relinquish control of breakpoint
resources to the application.

If the application attempts to modify the breakpoint or breakpoint control (BPCON) registers
without first obtaining rights, an OPERATION.unimplemented fault will be generated. In this
case, the breakpoint resource will not be modified, whether accessed through a sysctl instruction
or as a memory-mapped register.
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Application code requests modification rights by executing the sysctl instruction and issuing the
Breakpoint Resource Request message (src1.Message_Type = 06H). In response, the current
available breakpoint resources will be returned as the src/dest parameter (src/dest must be a
register). The src2 parameter is not used. Results returned in the src/dest parameter must be
interpreted as shown in Table 10-1.

The following code sample illustrates the execution of the breakpoint resource request.

ldconst 0x600, r4 # Load the Breakpoint Resource 
# Request message type into r4.

sysctl r4, r4, r4 # Issue the request.

Assume in this example that after execution of the sysctl instruction, the value of r4 is
0000.0022H. This indicates that the application has gained modification rights to both instruction
and both data address breakpoint registers. If the value returned is zero, the application has not
gained the rights to the breakpoint resources.

Because the i960 Jx processor does not initialize the breakpoint registers from the control table
during initialization (as i960 Cx processors do), the application must explicitly initialize the
breakpoint registers in order to use them once modification rights have been granted by the sysctl
instruction.

10.2.7.4 Breakpoint Control Register

The format of the BPCON register is shown in Figure 10-2. Each breakpoint has four control bits
associated with it: two mode and two enable bits. The enable bits (DABx.e0, DABx.e1) in BPCON
act to enable or disable the data address breakpoints, while the mode bits (DABx.m0, DABx.m1)
dictate which type of access will generate a break event.

Table 10-1.  SRC/DEST Encoding

SRC/DEST 7:4 SRC/DEST 3:0

Number of Available Data Address 
Breakpoints

Number of Available 
Instruction Breakpoints

Note: SRC3 31:8 are reserved and will always return zeroes.
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Figure 10-2.  Breakpoint Control Register (BPCON)

Programming the BPCON register is summarized in Table 10-2.

The mode bits of BPCON control what type of access generates a fault, trace message, or break
event, as summarized in Table 10-3.

Table 10-2.   Configuring the Data Address Breakpoint Registers

PC.te DABx.e1 DABx.e0 Description

0 X X No action. With PC.te clear, breakpoints are globally disabled.

X 0 0 No action. DABx is disabled.

1 0 1 Reserved.

1 1 0 Reserved.

1 1 1 Generate a Trace Fault.

Note: “X” = don’t care. Reserved combinations must not be used.

Table 10-3.  Programming the Data Address Breakpoint Modes

DABx.m1 DABx.m0 Mode

0 0 Break on Data Write Access Only.

0 1 Break on Data Read or Data Write Access.

1 0 Break on Data Read Access.

1 1 Any access.

28 24 20 16 12 8 4 031

DAB0

ee

1 0

m

0

m

1

e

0

e

1

m

0

m

1

DAB1

Reserved
(Initialize to 0)

Hardware Reset Value: 0000 0000H

Software Re-Init Value: Retains State
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10.2.7.5 Data Address Breakpoint Registers

The format for the Data Address Breakpoint (DAB) registers is shown in Figure 10-3. Data
Address Breakpoint Register Format. Each of the two breakpoint registers contains a 32-bit
address of a byte to match on.

A breakpoint is triggered when both a data access’s type and address matches that specified by
BPCON and the appropriate DAB register. The mode bits for each DAB register, which are
contained in BPCON (see section 10.2.7.4), qualify the access types that DAB will match. An
access-type match selects that DAB register to perform address checking. An address match occurs
when the byte address of any of the bytes referenced by the data access matches the byte address
contained within a selected DAB.

Consider the following example. DAB0 is enabled to break on any data read access and has a value
of 100FH. Any of the following instructions will cause the DAB0 breakpoint to be triggered:

ldob 0x100f,r8
ldos 0x100e,r8
ld 0x100c,r8
ld 0x100d,r8 /* even unaligned accesses */
ldl 0x1008,r8
ldq 0x1000,r8

Note that "ldt 0x1000,r8" will not cause the breakpoint to be triggered because byte 100FH is not
referenced by the triple word access.

Data address breakpoints can be set to break on any data read, any data write, or any data read or
data write access. All accesses qualify for checking. These include explicit load and store instruc-
tions, and implicit data accesses performed by other instructions and normal processor operations.

For data accesses to the memory-mapped control register space, it is unpredictable whether
breakpoint traces are generated when the access matches the breakpoints and also results in an
OPERATION fault or TYPE.MISMATCH fault. The OPERATION or TYPE.MISMATCH fault
will always be reported in this case.
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Figure 10-3.  Data Address Breakpoint Register Format

10.2.7.6 Instruction Breakpoint Registers

The format for the instruction breakpoint registers is given in Figure 10-4. Instruction Breakpoint
Register Format. The upper thirty bits of the IBPx register contains the word-aligned, instruction
address to break on. The two low-order bits indicate the action to take upon an address match.

Figure 10-4.  Instruction Breakpoint Register Format

Programming the instruction breakpoint register modes is shown in Table 10-4.

On the i960 Jx microprocessor, the instruction breakpoint memory-mapped registers can be read
by using the sysctl instruction only. They can be modified by sysctl or by a word-length store
instruction. 

28 24 20 16 12 8 4 031

Data Address

Hardware Reset Value: 0000 0000H

Software Re-init Value: 0000 0000H

28 24 20 16 12 8 4 031

IBPx Mode

Instruction Address

m

1

m

0

Hardware Reset Value: 0000 0000H

Software Re-init Value: 0000 0000H
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10.3 GENERATING A TRACE FAULT

To summarize the information presented in the previous sections, the processor services a trace
fault when PC.te is set and the processor detects any of the following conditions:

• An instruction included in a trace mode group executes or is about to execute (in the case of a
prereturn trace event) and the trace mode for that instruction is enabled.

• A fault call operation executes and the call-trace mode is enabled.

• A mark instruction executes and the breakpoint-trace mode is enabled.

• An fmark instruction executes.

• The processor executes an instruction at an IP matching an enabled instruction address
breakpoint register.

• The processor issues a memory access matching the conditions of an enabled data address
breakpoint register.

10.4 HANDLING MULTIPLE TRACE EVENTS

With the exception of a prereturn trace event, which is always reported alone, it is possible for a
combination of trace events to be reported in the same fault record. The processor may not report
all events; however, it will always report a supervisor event and it will always signal at least one
event.

If the processor reports prereturn trace and other trace types at the same time, it reports the other
trace types in a single trace fault record first, and then services the prereturn trace fault upon return
from the other trace fault.

Table 10-4.  Instruction Breakpoint Modes

PC.te IBPx.m1 IBPx.m0 Action

0 X X No action. Globally disabled.

X 0 0 No action. IBPx disabled.

1 0 1 Reserved.

1 1 0 Reserved.

1 1 1 Generate a Trace Fault.

Note: “X” = don’t care. Reserved combinations must not be used.
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10.5 TRACE FAULT HANDLING PROCEDURE

The processor calls the trace fault handling procedure when it detects a trace event. See section
9.7, “FAULT HANDLING PROCEDURES” (pg. 9-13) for general requirements for fault
handling procedures.

The trace fault handling procedure is involved in a specific way and is handled differently than
other faults. A trace fault handler must be invoked with an implicit system-supervisor call. When
the call is made, the PC register trace enable bit is cleared. This disables trace faults in the trace
fault handler. Recall that, for all other implicit or explicit system-supervisor calls, the trace enable
bit is replaced with the system procedure table trace control bit. The exceptional handling of trace
enable for trace faults ensures that tracing is turned off when a trace fault handling procedure is
being executed. This is necessary to prevent an endless loop of trace fault handling calls.

10.5.1 Tracing and Interrupt Procedures

When the processor invokes an interrupt handling procedure to service an interrupt, it disables
tracing. It does this by saving the PC register’s current state in the interrupt record, then clearing
the PC register trace enable bit.

On returning from the interrupt handling procedure, the processor restores the PC register to the
state it was in prior to handling the interrupt, which restores the trace enable bit. See section
10.5.2.2, “Tracing on Implicit Call” (pg. 10-13) and section 10.5.2.5, “Tracing on Return from
Implicit Call: Interrupt Case” (pg. 10-15) for a detailed description of tracing on calls and returns
from interrupts.

10.5.2 Tracing on Calls and Returns

During call and return operations, the trace enable flag (PC.te) may be altered. This section
discusses how tracing is handled on explicit and implicit calls and returns.

Since all trace faults (except prereturn) are serviced after execution of the traced instruction,
tracing on calls and returns is controlled by the PC.te in effect after the call or the return.

10.5.2.1 Tracing on Explicit Call

Tracing an explicit call happens before execution of the first instruction of the procedure called.

Tracing is not modified by using a call or callx instruction. Further, tracing is not modified by
using a calls instruction from supervisor mode. When calls is issued from user mode, PC.te is
read from the supervisor stack pointer trace enable bit (SSP.te) of the system procedure table,
which is cached on chip during initialization. The trace enable bit in effect before the calls is



TRACING AND DEBUGGING

10-13

10

stored in the new PFP[0] bit and is restored upon return from the routine (see section 10.5.2.3,
“Tracing on Return from Explicit Call” (pg. 10-14)). The calls instruction and all instructions of
the procedure called are traced according to the new PC.te. 

Table 10-5 summarizes all cases; a and x are bit variables.

10.5.2.2 Tracing on Implicit Call

Tracing on an implicit call happens before execution of the first instruction of the non-trace fault
handler called. Table 10-6 summarizes all cases of tracing on implicit call. In the table, a is a bit
variable that symbolizes the trace enable bit in PC.

Table 10-5.  Tracing on Explicit Call

Call
Type

Source
PC.te

Source
PC.em

PFP.rrr
Target
PC.te

Trace Enable 
Used for Traces 

on Call

call, callx a x 000 a a

calls a super 000 a a

calls a user 01a SSP.te SSP.te

Table 10-6.  Tracing on Implicit Call

Call
Type

SPT entry rrr
Source
PC.te

Target
PC.te

TE Used for 
Traces on 

Implicit Call

00-Flt* N.A. 001 a a a

10-Flt* 00 001 a a a

10-Flt* 10 001 a SSP.te SSP.te

00-Parallel/Override Flt

00-Trace Flt
x Type of trace fault not supported

10-Parallel/Override Flt

10-Trace Flt
00 Type of trace fault not supported

10-Parallel/Override Flt

10-Trace Flt
10 001 a 0 0

Interrupt N.A. 111 a 0 0

* All faults except parallel/override and trace faults
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Tracing is not altered on the way to a local or a system-local fault handler, so the call is traced if
PC.te and TC.call are set before the call. For an implicit system-supervisor call, PC.te is read from
SSP.te. The trace on the call is serviced before execution of the first instruction of the non-trace
fault handler (tracing is disabled on the way to a trace fault handler).

The only type of parallel/override fault handler supported is the system-supervisor type. Tracing is
disabled on the way to the parallel/override fault handler.

The only type of trace fault handler supported is the system-supervisor type. Tracing is disabled on
the way to the trace fault handler.

Tracing is disabled by the processor on the way to an interrupt handler, so an interrupt call is never
traced.

Note that the Fault IP field of the fault record is not defined when tracing a fault call, because there
is no instruction pointer associated to an implicit call.

10.5.2.3 Tracing on Return from Explicit Call

Table 10-7 shows all cases.

For a return from local call (return type 000), tracing is not modified. For a return from system call
(return type 01a, with PC.te equal to “a” before the call), tracing of the return and subsequent
instructions is controlled by “a”, which is restored in the PC.te during execution of the return.

10.5.2.4 Tracing on Return from Implicit Call: Fault Case

When the processor detects several fault conditions on the same instruction (referred as the
“target”), the non-trace fault is serviced first. Upon return from the non-trace fault handler, the
processor services a trace fault on the target if in supervisor mode before the return and if the trace
enable and trace fault pending flags are set in the PC field of the non-trace fault record (at FP-16).

Table 10-7.  Tracing on Return From Explicit Call

PFP.rrr PC.em PC.te
Trace Enable Used for Trace 

on Return

000 x w w

01a user w w

01a super w a
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If the processor is in user mode before the return, tracing is not altered. The pending trace on the
target instruction is lost, and the return is traced according to the current PC.te. Table 10-8
summarizes the two cases:

10.5.2.5 Tracing on Return from Implicit Call: Interrupt Case

When an interrupt and a trace fault are reported on the same instruction, the instruction completes
and then the interrupt is serviced. Upon return from the interrupt, the trace fault is serviced, if the
interrupt handler did not switch to user mode. On the i960 Jx processor, the interrupt handler
returns directly to the trace fault handler.

If the interrupt return is executed from user mode, the PC register is not restored and tracing of the
return occurs according to the PC.te and TC.modes bit fields. 

Table 10-9 summarizes the user and supervisor cases:

Table 10-8.  Tracing on Return from Fault

PFP.rrr
PC.em
Before 
Return

PC.te
Before 
Return

Target PC.te
After Return

Pending Trace on 
Target When

Trace on 
Return When

001 user w w Pending Trace is Lost w & TC.event

001 super w (FP-16).te
(FP-16).te & 

(FP-16).tfp
Not Traced

Table 10-9.  Tracing on Return from Interrupt

rrr PC.em PC.te Tgt PC.te Pending Trace on Target When
Trace on Return 

When

111 user w w Pending Trace is Lost w & TC.ev

111 super w (FP-16).TE RIP points to trace handler Not Traced*

* Assume the interrupt handler does not turn tracing on. If it does, it is unpredictable whether the return is 
traced or not.
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CHAPTER 11
INITIALIZATION AND SYSTEM REQUIREMENTS

This chapter describes the steps that the i960® Jx processor performs during initialization.
Discussed are the RESET pin, the reset state and built-in self test (BIST) features. This chapter also
describes the processor’s basic system requirements — including power, ground and clock — and
concludes with some general guidelines for high-speed circuit board design. 

11.1 OVERVIEW

During the time that the RESET pin is held asserted, the processor is in a quiescent reset state. All
external pins are inactive and the internal processor state is forced to a known condition. The
processor begins initialization when the RESET pin is deasserted.

When initialization begins, the processor uses an Initial Memory Image (IMI) to establish its state.
The IMI includes:

• Initialization Boot Record (IBR) – contains the addresses of the first instruction of the 
user’s code and the PRCB.

• Process Control Block (PRCB) – contains pointers to system data structures; also contains 
information used to configure the processor at initialization.

• System data structures – the processor caches several data structure pointers internally at 
initialization.

Software can reinitialize the processor. When a reinitialization takes place, a new PRCB and reini-
tialization instruction pointer are specified. Reinitialization is useful for relocating data structures
from ROM to RAM after initialization.

The i960 Jx processor supports several facilities to assist in system testing and startup diagnostics.
ONCE mode electrically removes the processor from a system. This feature is useful for system-
level testing where a remote tester exercises the processor system. The i960 Jx processor also
supports JTAG boundary scan (see Chapter 17, TEST FEATURES). During initialization, the
processor performs an internal functional self test and external bus self test. These features are
useful for system diagnostics to ensure basic CPU and system bus functionality.

The processor is designed to minimize the requirements of its external system. It requires an input
clock (CLKIN) and clean power and ground connections (VSS  and VCC). Since the processor can
operate at a high frequency, the external system must be designed with considerations to reduce
induced noise on signals, power and ground.
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11.2 INITIALIZATION

Initialization describes the mechanism that the processor uses to establish its initial state and begin
instruction execution. Initialization begins when the RESET pin is deasserted. At this time, the
processor automatically configures itself with information specified in the IMI and performs its
built-in self test based on the sampling of the STEST pin. The processor then branches to the first
instruction of user code. See Figure 11-1 for a flow chart of i960 Jx processor initialization.

Figure 11-1.  Processor Initialization Flow
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The objective of the initialization sequence is to provide a complete, working initial state when the
first user instruction executes. The user’s startup code needs only to perform several basic
functions to place the processor in a configuration for executing application code.

11.2.1 Reset State Operation

The RESET pin, when asserted (active low), causes the processor to enter the reset state. All
external signals go to a defined state (Table 11-1), internal logic is initialized, and certain registers
are set to defined values (Table 11-2). When the RESET pin is deasserted, the processor initializes
as described in section 11.5, “Startup Code Example” (pg. 11-23). RESET is a level-sensitive,
asynchronous input. If HOLD is asserted while the processor is in reset, the processor will
acknowledge the request. All external pins will assume their usual Th states while the bus is in the
hold state.

The RESET pin must be asserted when power is applied to the processor. The processor then
stabilizes in the reset state. This power-up reset is referred to as cold reset. To ensure that all
internal logic has stabilized in the reset state, a valid input clock (CLKIN) and VCC  must be present
and stable for a specified time before RESET can be deasserted.

The processor may also be cycled through the reset state after execution has started. This is
referred to as warm reset. For a warm reset, the RESET pin must be asserted for a minimum
number of clock cycles. If a warm reset is asserted during a bus hold, the processor continues to
drive HOLDA until HOLD is deasserted. However, the processor will begin the internal initial-
ization process. Specifications for a cold and warm reset can be found in the 80960JA/JF
Embedded 32-bit Microprocessor Data Sheet or the 80960JD Embedded 32-bit Microprocessor
Data Sheet. 

While the processor’s RESET pin is asserted, output pins are driven to the states as indicated in
Table 11-1. The reset state cannot be entered under direct control from user code. No reset
instruction — or other condition that forces a reset — exists on the i960 Jx processors. The RESET
pin must be asserted to enter the reset state. The processor does, however, provide a means to re-
enter the initialization process. See section 11.4.1, “Reinitializing and Relocating Data Structures”
(pg. 11-22).
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Figure 11-2.  Cold Reset Waveform
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Table 11-1.  Pin Reset State 

Pins Reset State Pins Reset State

AD31:0 Floating W/R Low (read)

ALE Low (inactive) DT/R Low (receive)

ALE High (inactive) DEN High (inactive)

ADS High (inactive) BLAST High (inactive)

A3:2 Floating LOCK/ ONCE High (inactive)

BE3:0 High (inactive) HOLDA Valid Output

WIDTH/HLTD1:0 Floating FAIL Low (Active)

D/C Floating TDO Valid Output

Table 11-2.  Register Values After Reset  (Sheet 1 of 2)

Register Value After Cold Reset Value After Software Re-Init

AC AC initial image in PRCB AC initial image in PRCB

PC 001F2002H 001F2002H

TC initial image in Control Table, offset 68H initial image in Control Table, offset 68H

FP (g15) interrupt stack base interrupt stack base

PFP (r0) undefined value before software re-init

SP (r1) interrupt stack base+64 interrupt stack base+64

RIP (r2) undefined undefined

IPND undefined value before software re-init

IMSK 00H value before software re-init

LMAR0-1 undefined value before software re-init

LMMR0-1 bit 0 = 0; bits 1-31 = undefined bit 0 = 0; bits 1-31 = undefined

DLMCON
bit 0 = bit 7 of byte at FEFF FF3CH

bit 1 = 0; bits 2-31 = undefined

bit 0 = value before software re-init
bit 1 = 0; bits 2-31= undefined

TRR0-1 undefined value before software re-init

TCR0-1 undefined value before software re-init

TMR0-1 bits 1-5 = 0; bits 0, 6-31 = undefined bits 1-5 = 0; bits 0, 6-31 = undefined

IPB0 0000.0000H 0000.0000H

IPB1 0000.0000H 0000.0000H

DAB0 0000.0000H 0000.0000H

DAB1 0000.0000H 0000.0000H

IMAP0 initial image in Control Table, offset 10H initial image in Control Table, offset 10H

IMAP1 initial image in Control Table, offset 14H initial image in Control Table, offset 14H

Errata 11/28/94 
Bob W. Lee

Description: In the 
current implemen-
tation of the i960 Jx 
processor, the bits 
LMMR0.lmte, 
LMMR1.lmte, 
DLMCON.dcen 
and the BPCON 
register retain their 
previous values 
after software reini-
tialization. Future 
steppings of the 
i960 Jx processor, 
however, will clear 
these bits after 
reinitialization. See 
Table 11-2 The 
text of the user’s 
manual reflects 
the current imple-
mentation.

Solution: 
Software should 
handle both current 
and future 
operation of these 
registers. 
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11.2.2 Self Test Function (STEST, FAIL)

As part of initialization, the i960 Jx processor executes a bus confidence self test, an alignment
check for data structures within the initial memory image (IMI), and optionally, a built-in self test
program. The self test (STEST) pin enables or disables built-in self test. The FAIL pin indicates
that the self tests passed or failed by asserting FAIL. During normal operations the FAIL pin can
be asserted if a System Error is detected. The following subsections further describe these pin
functions.

Built-in self test checks basic functionality of internal data paths, registers and memory arrays on-
chip. Built-in self test is not intended to be a full validation of processor functionality; it is
intended to detect catastrophic internal failures and complement a user’s system diagnostics by
ensuring a confidence level in the processor before any system diagnostics are executed.

11.2.2.1 The STEST Pin

The STEST pin enables and disables Built-In Self Test (BIST). BIST can be disabled if the initial-
ization time needs to be minimized or if diagnostics are simply not necessary. The STEST pin is
sampled on the rising edge of the RESET input:

• If STEST is asserted (high), the processor executes the built-in self test.

• If STEST is deasserted, the processor bypasses built-in self test. 

IMAP2 initial image in Control Table, offset 18H initial image in Control Table, offset 18H

ICON initial image in Control Table, offset 1CH initial image in Control Table, offset 1CH

PMCON0_1 initial image in Control Table, offset 20H initial image in Control Table, offset 20H

PMCON2_3 initial image in Control Table, offset 28H initial image in Control Table, offset 28H

PMCON4_5 initial image in Control Table, offset 30H initial image in Control Table, offset 30H

PMCON6_7 initial image in Control Table, offset 38H initial image in Control Table, offset 38H

PMCON8_9 initial image in Control Table, offset 40H initial image in Control Table, offset 40H

PMCON10_11 initial image in Control Table, offset 48H initial image in Control Table, offset 48H

PMCON12_13 initial image in Control Table, offset 50H initial image in Control Table, offset 50H

PMCON14_15 initial image in Control Table, offset 58H initial image in Control Table, offset 58H

BPCON 0000.0000H Value before software re-init.

BCON initial image in Control Table, offset 6CH initial image in Control Table, offset 6CH

DEVICEID initialized by reset process initialized by reset process

Table 11-2.  Register Values After Reset  (Sheet 2 of 2)

Register Value After Cold Reset Value After Software Re-Init

See Errata 
notice on 
previous 
page.
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11.2.2.2 External Bus Confidence Test

The external bus confidence test is always performed regardless of STEST pin value.

The external bus confidence test checks external bus functionality; it reads eight words from the
Initialization Boot Record (IBR) and performs a checksum on the words and the constant FFFF
FFFFH. The test passes only when the processor calculates a sum of zero (0). The external bus
confidence test can detect catastrophic bus failures such as external address, data or control lines
that are stuck, shorted or open.

11.2.2.3 The Fail Pin (FAIL)

The FAIL pin signals errors in either the built-in self test or bus confidence self test. FAIL is
asserted (low) for each self test (Figure 11-3):

• When any test fails, the FAIL pin remains asserted, a fail code message is driven onto the 
address bus, and the processor stops execution at the point of failure.

• When a system error occurs, FAIL is also asserted. See section 11.2.2.4, “IMI Alignment 
Check and System Error” (pg. 11-8) for details.

• When the test passes, FAIL is deasserted.

If FAIL stays asserted, the only way to resume normal operation is to perform a reset operation.
When the STEST pin is used to disable the built-in self test, the test does not execute; however,
FAIL still asserts at the point where the built-in self test would occur. FAIL is deasserted after the
bus confidence test passes. In Figure 11-3, all transitions on the FAIL pin are relative to CLKIN as
described in the 80960JA/JF Embedded 32-bit Microprocessor Data Sheet and the 80960JD
Embedded 32-bit Microprocessor Data Sheet.

Figure 11-3.  FAIL Timing (80960JA/JF Case)

RESET

FAIL

~414,000 Cycles

26 Cycles

FAIL FAIL

PASS PASS

Built-In Self-Test Status
Bus Confidence 

  132 Cycles

Built-In Self-Test Bus Confidence Test

Test Status

Cycles = Number of CLKIN Periods
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11.2.2.4 IMI Alignment Check and System Error

The alignment check during initialization for data structures within the IMI ensures that the
PRCB, control table, interrupt table, system-procedure table, and fault table are aligned to word
boundaries. Normal processor operation is not possible without the alignment of these key data
structures. The alignment check is one case where a System Error could occur.

The other case of System Error can occur during regular operation when generation of an override
fault incurs a fault. The sequence of events leading up to this case is quite uncommon.

When a System Error is detected, the FAIL pin is asserted, a fail code message is driven onto the
address bus, and the processor stops execution at the point of failure. The only way to resume
normal operation of the processor is to perform a reset operation. Because System Error
generation can occur sometime after the BUS confidence test and even after initialization during
normal processor operation, the FAIL pin will be at a logic one before the detection of a System
Error.

11.2.2.5 FAIL Code

The processor uses only one read bus transaction to signal the fail code message; the address of the
bus transaction is the fail code itself. The fail code is of the form: 0xfeffffnn; bits 6 to 0 contain a
mask recording the possible failures. Bit 7, when one, indicates the mask contains failures from
Built-In Self-Test (BIST); when zero, the mask indicates other failures. The fail codes are shown
in Table 11-3 and Table 11-4. 

    

Table 11-3.  Fail Codes For BIST (bit 7 = 1)

Bit When set:

6 On-chip Data-RAM failure detected by BIST

5 Internal Microcode ROM failure detected by BIST

4 I-cache failure detected by BIST

3 D-cache failure detected by BIST

2
Local-register cache or processor core (RF, EU, MDU, 
PSQ) failure detected by BIST

1 Always Zero.

0 Always Zero.
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11.3 ARCHITECTURALLY RESERVED MEMORY SPACE

The i960 Jx microprocessor contains 232 bytes of address space. Portions of this address space are
architecturally reserved and must not be used by customers. Figure 3-2. Memory Address Space
(pg. 3-13) shows the reserved address space. The i960 Jx suppresses all external bus cycles from 0
to 3FFH and from FF00 0000H to FFFF FFFFH.

Addresses FEFF FF60H through FFFF FFFFH are reserved for implementation-specific functions.
This address range is termed “reserved” since i960 architecture implementations may use these
addresses for functions such as memory-mapped registers or data structures. Therefore, to ensure
complete object level compatibility, portable code must not access or depend on values in this
region. 

The i960 Jx microprocessor uses the reserved address range 0000 0000H through 0000 03FFH for
internal data RAM. This internal data RAM is used for storage of interrupt vectors plus general
purpose storage available for application software variable allocation or data structures. Loads and
stores directed to these addresses access internal memory; instruction fetches from these addresses
are not allowed for the i960 Jx microprocessor. See Chapter 4, CACHE AND ON-CHIP DATA
RAM, for more details.

11.3.1 Initial Memory Image (IMI)

The IMI comprises the minimum set of data structures that the processor needs to initialize its
system. As shown in Figure 11-4, these structures are: the initialization boot record (IBR), process
control block (PRCB) and system data structures. The IBR is located at a fixed address in memory.
The other components are referenced directly or indirectly by pointers in the IBR and the PRCB.

Table 11-4.  Remaining Fail Codes (bit 7 = 0)

Bit When set:

6 Always One; this bit does not indicate a failure.

5 Always One; this bit does not indicate a failure.

4
A data structure within the IMI is not aligned to a word 
boundary.

3 A System Error during normal operation has occurred.

2 The Bus Confidence test has failed.

1 Always Zero.

0 Always Zero.
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The IMI performs three functions for the processor:

• Provides initial configuration information for the core and integrated peripherals.

• Provides pointers to the system data structures and the first instruction to be executed 
after processor initialization.

• Provides checksum words that the processor uses in its self test routine at startup.

Several data structures are typically included as part of the IMI because values in these data
structures are accessed by the processor during initialization. These data structures are usually
programmed in the systems’s boot ROM, located in memory region 14_15 of the address space.
The required data structures are:

• PRCB

• IBR

• System procedure table

• Control table

• Interrupt table

• Fault table

To ensure proper processor operation, the PRCB, system procedure table, control table, interrupt
table, and fault table must not be located in architecturally reserved memory -- addresses reserved
for on-chip Data RAM and addresses at and above FEFF FF60H. In addition, each of these
structures must start at a word-aligned address; a System Error occurs if any of these structures are
not word-aligned (see section 11.2.2.3).

At initialization, the processor loads the Supervisor Stack Pointer (SSP) from the system
procedure table, aligns it to a 16-byte boundary, and caches the pointer in the SSP memory-
mapped control register (see section 3.3, “MEMORY-MAPPED CONTROL REGISTERS” (pg.
3-5)). Recall that the supervisor stack pointer is located in the preamble of the system procedure
table at byte offset 12 from the base address. The system procedure table base address is
programmed in the PRCB. Consult section 7.5.1, “System Procedure Table” (pg. 7-16) for the
format of the system procedure table.

At initialization, the NMI vector is loaded from the interrupt table and saved at location
0000 0000H of the internal data RAM. The interrupt table is typically programmed in the boot
ROM and then relocated to internal RAM by reinitializing the processor.

The fault table is typically located in boot ROM. If it is necessary to locate the fault table in RAM,
the processor must be reinitialized.

The remaining data structures that an application may need are the user stack, supervisor stack and
interrupt stack. These stacks must be located in a system’s RAM. 
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Figure 11-4.  Initial Memory Image (IMI) and Process Control Block (PRCB)
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11.3.1.1 Initialization Boot Record (IBR)

The initialization boot record (IBR) is the primary data structure required to initialize the i960 Jx
processor. The IBR is a 12-word structure which must be located at address FEFF FF30H (see
Table 11-5). The IBR is made up of four components: the initial bus configuration data, the first
instruction pointer, the PRCB pointer and the bus confidence test checksum data.

When the processor reads the IMI during initialization, it must know the bus characteristics of
external memory where the IMI is located. Specifically, it must know the bus width and endianism
for the remainder of the IMI. At initialization, the processor sets the PMCON register to an 8-bit
bus width. The processor then needs to form the initial DLMCON and PMCON14_15 registers so
that the memory containing the IBR can be accessed correctly. The lowest-order byte of each of
the IBR’s first 4 words are used to form the register values. On the i960 Jx processor, the bytes at
FEFF FF30 and FEFF FF34 are not needed, so the processor starts fetching at address FEFF FF38.
The loading of these registers is shown in the pseudo-code flow in Example 11-1.

Table 11-5.  Initialization Boot Record

Byte Physical Address Description

FEFF FF30H PMCON14_15, byte 0

FEFF FF31 to FEFF FF33 Reserved

FEFF FF34H PMCON14_15, byte 1

FEFF FF35 to FEFF FF37 Reserved

FEFF FF38H PMCON14_15, byte 2

FEFF FF39 to FEFF FF3B Reserved

FEFF FF3CH PMCON14_15, byte 3

FEFF FF3D to FEFF FF3F Reserved

FEFF FF40 to FEFF FF43 First Instruction Pointer

FEFF FF44 to FEFF FF47 PRCB Pointer

FEFF FF48 to FEFF FF4B Bus Confidence Self-Test Check Word 0

FEFF FF4C to FEFF FF4F Bus Confidence Self-Test Check Word 1

FEFF FF50 to FEFF FF53 Bus Confidence Self-Test Check Word 2

FEFF FF54 to FEFF FF57 Bus Confidence Self-Test Check Word 3

FEFF FF58 to FEFF FF5B Bus Confidence Self-Test Check Word 4

FEFF FF5C to FEFF FF5F Bus Confidence Self-Test Check Word 5
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Bit 31 of the assembled PMCON word loaded from the IBR is written to DLMCON.be to establish
the initial endianism of memory; the processor initializes the DLMCON.dcen bit to 0 to disable
data caching. The remainder of the assembled word is used to initialize PMCON14_15. In
conjunction with this step, the processor clears the bus control table valid bit (BCON.ctv), to
ensure for the remainder of initialization that every bus request issued takes configuration
information from the PMCON14_15 register, regardless of the memory region associated with the
request. At a later point in initialization, the processor loads the remainder of the memory region

Example 11-1.  Processor Initialization Flow 

Processor_Initialization_flow()
{ FAIL_pin = true;

restore_full_cache_mode; disable(I_cache); invalidate(I_cache); 
disable(D_cache); invalidate(D_cache);
BCON.ctv = 0; /* Selects PMCON14_15 to control all accesses */
PMCON14_15 = 0; /* Selects 8-bit bus width */

/** Exit Reset State & Start_Init **/
if (STEST_ON_RISING_EDGE_OF_RESET)

status = BIST();   /* BIST does not return if it fails */
FAIL_pin = false;

   PC = 0x001f2002;  /* PC.Priority = 31, PC.em = Supervisor,*/
 /* PC.te = 0; PC.State = Interrupted    */

ibr_ptr = 0xfeffff30;  /* ibr_ptr used to fetch IBR words      */
    
/** Read PMCON14_15 image in IBR **/

FAIL_pin = true; IMSK       = 0;
DLMCON.dcen = 0; LMMR0.lmte = 0;   LMMR1.lmte = 0; 
DLMCON.be = (memory[ibr_ptr + 0xc] >> 7);
PMCON14_15[byte2] = 0xc0 & memory[ibr_ptr + 8];    

/** Compute CheckSum on Boot Record **/
carry = 0;  CheckSum = 0xffffffff;
for (i=0; i<8; i++) /* carry is carry out from previous add*/

CheckSum = memory[ibr_ptr + 16 + i*4] + CheckSum + carry;
if (CheckSum != 0)

{ fail_msg = 0xfeffff64;   /* Fail BUS Confidence Test */
  dummy = memory[fail_msg];  /* Do load with address = fail_msg */
  for (;;) ;

          }                           /* loop forever with FAIL pin true */
else   FAIL_pin = false;

/** Process PRCB and Control Table **/
prcb_ptr   = memory[ibr_ptr+0x14];
ctrl_table = memory[prcb_ptr+4];
Process_PRCB(prcb_ptr);     /* See Process PRCB Section for Details */
IP = memory[ibr_ptr+0x10];

g0 = DEVICE_ID;
return;/* Execute First Instruction */

}

Errata: 12-20-94 BWL.

In Example 11-1, the
line:
for (i=0; i<6; i++) /*
carry is carry out from
previous add*/

Has been changed to: 
for (i=0; i<8; i++) /*
carry is carry out from
previous add*/
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configuration table from the external control table. The Bus Configuration (BCON) register is also
loaded at this time. The control table valid (BCON.ctv) bit is then set in the control table to
validate the PMCON registers after they are loaded. In this way, the bus controller is completely
configured during initialization. (See Chapter 15, EXTERNAL BUS for a complete discussion of
memory regions and configuring the bus controller.)

After the bus configuration data is loaded and the new bus configuration is in place, the processor
loads the remainder of the IBR which consists of the first instruction pointer, the PRCB pointer
and six checksum words. The PRCB pointer and the first instruction pointer are internally cached.
The six checksum words — along with the PRCB pointer and the first instruction pointer — are
used in a checksum calculation which implements a confidence test of the external bus. The
checksum calculation is shown in the pseudo-code flow in Example 11-1. If the checksum
calculation equals zero, then the confidence test of the external bus passes.

 Figure 11-4 further describe the IBR organization.

Figure 11-5.  PMCON14_15 Register Bit Description in IBR

11.3.1.2 Process Control Block (PRCB)

The PRCB contains base addresses for system data structures and initial configuration information
for the core and integrated peripherals. The base addresses are accessed from these internal
registers. The registers are accessible to the users through the memory mapped interface. Upon
reset or reinitialization, the registers are initialized. The PRCB format is shown in Table 11-6.

28 24 20 4 016 12 8

Reserved
(Initialize to 0)

PMCON14_15 Register

Boot Bit Endian (BBGE)
  (0)  Little Endian
  (1)  Big Endian

Bus Width (BW)
  (00)  8-bit
  (01) 16-bit
  (10) 32-bit
  (11) Reserved

byte 0byte 1byte 2byte 3
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The initial configuration information is programmed in the arithmetic controls (AC) initial image,
the fault configuration word, the instruction cache configuration word, and the register cache
configuration word. Figure 11-6 shows these configuration words.

Table 11-6.  PRCB Configuration

Physical Address Description

PRCB POINTER + 00H Fault Table Base Address

PRCB POINTER + 04H Control Table Base Address

PRCB POINTER + 08H AC Register Initial Image

PRCB POINTER + 0CH Fault Configuration Word

PRCB POINTER + 10H Interrupt Table Base Address

PRCB POINTER + 14H System Procedure Table Base Address

PRCB POINTER + 18H Reserved

PRCB POINTER + 1CH Interrupt Stack Pointer

PRCB POINTER + 20H Instruction Cache Configuration Word

PRCB POINTER + 24H Register Cache Configuration Word
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Figure 11-6.  Process Control Block Configuration Words

28 24 20 16 12 8 4 031

Reserved
F_CR076A

28 24 20 16

12 8 4 0

31

AC Register Initial Image

Condition Code Bits - AC.cc

Integer-Overflow Flag - AC.of
(0) no overflow
(1) overflow
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11.3.2 Process PRCB Flow

The following pseudo-code flow illustrates the processing of the PRCB. Note that this flow is used
for both initialization and reinitialization (through sysctl).

Example 11-2.  Process PRCB Flow 

Process_PRCB(prcb_ptr)
{  PRCB_mmr = prcb_ptr;
   reset_state(data_ram); /* It is unpredictable whether the   */
                          /* Data RAM keeps its prior contents */
    fault_table  =  memory[PRCB_mmr];
    ctrl_table   =  memory[PRCB_mmr+0x4];
    AC           =  memory[PRCB_mmr+0x8];
    fault_config =  memory[PRCB_mmr+0xc];
        if (1 & (fault_config >> 30)) generate_fault_on_unaligned_access = false;
        else                          generate_fault_on_unaligned_access = true;

/** Load Interrupt Table and Cache NMI Vector Entry in Data RAM**/  
    Reset_block_NMI;
    interrupt_table =  memory[PRCB_mmr+0x10];
    memory[0] = memory[interrupt_table + (248*4) + 4];

/** Process System Procedure Table **/
    sysproc = memory[PRCB_mmr+0x14];
    temp    = memory[sysproc+0xc];
    SSP_mmr = (~0x3) & temp;
    SSP.te  = 1 & temp;

/** Initialize ISP, FP, SP, and PFP **/
    ISP_mmr =  memory[PRCB_mmr+0x1c];
    FP      = ISP_mmr;
    SP      = FP + 64;
    PFP     = FP;

/** Initialize Instruction Cache **/
    ICCW = memory[PRCB_mmr+0x20];
    if (1 & (ICCW >> 16) ) enable(I_cache);

/** Configure Local Register Cache **/
    programmed_limit = (7 & (memory[PRCB_mmr+0x24] >> 8) );
    config_reg_cache( programmed_limit );

/** Load_control_table. Note breakpoints and BPCON are excluded here **/
    load_control_table(ctrl_table+0x10 , ctrl_table+0x58);
    load_control_table(ctrl_table+0x68 , ctrl_table+0x6c);
    IBP0 = 0x0; IBP1 = 0x0; DAB0 = 0x0; DAB1 = 0x0; 
/** Initialize Timers **/
    TMR0.tc   = 0; TMR1.tc   = 0; TMR0.enable = 0; TMR1.enable = 0;
    TMR0.sup  = 0; TMR1.sup  = 0; TMR0.reload = 0; TMR1.reload = 0;
    TMR0.csel = 0; TMR1.csel = 0;
    return;
}
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11.3.2.1 AC Initial Image

The AC initial image is loaded into the on-chip AC register during initialization. The AC initial
image allows the initial value of the overflow mask, no imprecise faults bit and condition code bits
to be selected at initialization. 

The AC initial image condition code bits can be used to specify the source of an initialization or
reinitialization when a single instruction entry point to the user startup code is desirable. This is
accomplished by programming the condition code in the AC initial image to a different value for
each different entry point. The user startup code can detect the condition code values — and thus
the source of the reinitialization — by using the compare or compare-and-branch instructions.

11.3.2.2 Fault Configuration Word

The fault configuration word allows the operation-unaligned fault to be masked when an unaligned
memory request is issued. (See section 15.2.5, “Data Alignment” (pg. 15-22) for a description of
unaligned memory requests.) Whenever an unaligned access is encountered, the processor always
performs the access. After performing the access, the processor determines whether it should
generate a fault. If bit 30 in the fault configuration word is set, a fault is not generated after an
unaligned memory request is performed. If bit 30 is clear, a fault is generated after an unaligned
memory request is performed.

11.3.2.3 Instruction Cache Configuration Word

The instruction cache configuration word allows the instruction cache to be enabled or disabled at
initialization. If bit 16 in the instruction cache configuration word is set, the instruction cache is
disabled and all instruction fetches are directed to external memory. Disabling the instruction
cache is useful for tracing execution in a software debug environment. The instruction cache
remains disabled until one of two operations is performed:

• The processor is reinitialized with a new value in the instruction cache configuration 
word

• icctl is issued with the enable instruction cache operation

• sysctl is issued with the configure instruction cache message type and a cache configu-
ration mode other than disable cache



INITIALIZATION AND SYSTEM REQUIREMENTS

11-19

11

11.3.2.4 Register Cache Configuration Word

The register cache configuration word specifies the number of free frames in the local register
cache that can be used by critical code (i.e., code that is in the interrupted state and has a process
priority greater than or equal to 28).

The register cache and the configuration word are explained further in section 4.2, “LOCAL
REGISTER CACHE” (pg. 4-2).

11.3.3 Control Table

The control table is the data structure that contains the on-chip control registers values. It is
automatically loaded during initialization and must be completely constructed in the IMI. Figure
11-7 shows the Control Table format.

For register bit definitions of the on-chip control table registers, see the following:

• IMAP — Figure 13-7. Interrupt Mapping (IMAP0-IMAP2) Registers (pg. 13-15)

• ICON — Figure 13-6. Interrupt Control (ICON) Register (pg. 13-13)

• PMCON — Figure 12-2. PMCON Register Bit Description (pg. 12-6)

• TC — Figure 10-1. Trace Controls (TC) Register (pg. 10-2)

• BCON — Figure 12-3. Bus Control Register (BCON) (pg. 12-7) 
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Figure 11-7.  Control Table
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11.4 DEVICE IDENTIFICATION ON RESET

A number characterizing the microprocessor type and stepping is programmed during manufacture
into the DEVICEID memory-mapped register. During initialization, the value is also placed in g0.

Figure 11-8.  IEEE 1149.1 Device Identification Register

The value for device identification is compliant with the IEEE 1149.1 specification and Intel
standards. Table 11-7 describes the fields of the device ID. The Version field corresponds to silicon
stepping: for example, 0000 refers to the A-0 stepping. 

28 24 20 4 016 12 8

110010000000

Manufacturer ID

Part Number

Version ModelGen

Product

  Type
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11.4.1 Reinitializing and Relocating Data Structures

Reinitialization can reconfigure the processor and change pointers to data structures. The
processor is reinitialized by issuing the sysctl instruction with the reinitialize processor message
type. (See section 6.2.67, “sysctl” (pg. 6-114) for a description of sysctl.) The reinitialization
instruction pointer and a new PRCB pointer are specified as operands to the sysctl instruction.
When the processor is reinitialized, the fields in the newly specified PRCB are loaded as described
in section 11.3.1.2, “Process Control Block (PRCB)” (pg. 11-14). 

Reinitialization is useful for relocating data structures to RAM after initialization. The interrupt
table must be located in RAM: to post software-generated interrupts, the processor writes to the
pending priorities and pending interrupts fields in this table. It may also be necessary to relocate
the control table to RAM: it must be in RAM if the control register values are to be changed by
user code. In some systems, it is necessary to relocate other data structures (fault table and system
procedure table) to RAM because of unsatisfactory load performance from ROM. 

After initialization, the software is responsible for copying data structures from ROM into RAM.
The processor is then reinitialized with a new PRCB which contains the base addresses of the new
data structures in RAM.

Reinitialization is required to relocate any of the data structures listed below, since the processor
caches the pointers to the structures. 

Table 11-7.  i960 Jx Processor Device Identification Register Settings by Model

Part Number

Version XType Gen Model Manufacturer 1

80L960JA, 
3.3V
2K Instruction Cache
1K Data Cache

xxxx 0000 100 0 001 0 0001 0000 0001 001 1

0x0082 1013

80960JF
5V
4K Instruction Cache
2K Data Cache

xxxx 1000 100 0 001 0 0000 0000 0001 001 1

0x0882 0013*

80L960JF
3.3V
4K Instruction Cache
2K Data Cache

xxxx 0000 100 0 001 0 0000 0000 0001 001 1

0x0082 0013

80960JD
5V
4K Instruction Cache
2K Data Cache

xxxx 1000 100 0 001 0 0000 0000 0001 001 1

0x0882 0013*

*The 80960JF and 80960JD part numbers are the same.
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The processor caches the following pointers during its initialization. To modify these data
structures, a software re-initialization is needed. 

• Interrupt Table Address

• Fault Table Address

• System Procedure Table Address

• Control Table Address

11.5 STARTUP CODE EXAMPLE 

After initialization is complete, user startup code typically copies initialized data structures from
ROM to RAM, reinitializes the processor, sets up the first stack frame, changes the execution state
to non-interrupted and calls the _main routine. This section presents an example startup routine
and associated header file. This simplified startup file can be used as a basis for more complete
initialization routines.

The examples in this section are useful for creating and evaluating startup code. The following lists
the example’s number, name and page.

• Example 11-3. Initialization Header File (init.h) (pg. 11-24)

• Example 11-4., Startup Routine (init.s) (pg. 11-25)

• Example 11-5., High-Level Startup Code (initmain.c) (pg. 11-28)

• Example 11-6., Control Table (ctltbl.c) (pg. 11-29)

• Example 11-7., Initialization Boot Record File (rom_ibr.c) (pg. 11-30)

• Example 11-8., Linker Directive File (init.ld) (pg. 11-31)

• Example 11-9., Makefile (pg. 11-33)
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Example 11-3.  Initialization Header File (init.h) 

/*----------------------------------------------------------*/
/*  init.h                                                  */
/*----------------------------------------------------------*/

#define BYTE_N(n,data)  (((unsigned)(data) >> (n*8)) & 0xFF)

typedef struct

   {

   unsigned char bus_byte_0;

   unsigned char reserved_0[3];

   unsigned char bus_byte_1;

   unsigned char reserved_1[3];

   unsigned char bus_byte_2;

   unsigned char reserved_2[3];

   unsigned char bus_byte_3;

   unsigned char reserved_3[3];

   void     (*first_inst)();

   unsigned *prcb_ptr;

   int      check_sum[6];

   }IBR;

/* PMCON Bus Width can be 8,16 or 32, default to 8 

 * PMCON14_15 BOOT_BIG_ENDIAN  0=little endian, 1=big endian
 */
#define BUS_WIDTH(bw)   ((bw==16)?(1<<22):(0)) | ((bw==32)?(2<<22):(0))

#define BOOT_BIG_ENDIAN (on)   ((on)?(1<<31:0))

/* Bus configuration */

#define DEFAULT (BUS_WIDTH(8) | BOOT_BIG_ENDIAN(0))

#define I_O (BUS_WIDTH(8) | BOOT_BIG_ENDIAN(0))
#define DRAM (BUS_WIDTH(32)| BOOT_BIG_ENDIAN(0))
#define ROM  (BUS_WIDTH(8) | BOOT_BIG_ENDIAN(0))
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Example 11-4.  Startup Routine (init.s)  (Sheet 1 of 4)

/*----------------------------------------------------------*/
/*  init.s                                                  */
/*----------------------------------------------------------*/

/* initial PRCB  */

.globl  _rom_prcb

.align 4 /* or .align 2 */
_rom_prcb:

.word   boot_flt_table          #  0 - Fault Table

.word   _boot_control_table     #  4 - Control Table

.word   0x00001000              #  8 - AC reg mask overflow fault

.word   0x40000000              # 12 - Flt CFG

.word   boot_intr_table         # 16 - Interrupt Table

.word   rom_sys_proc_table      # 20 - System Procedure Table

.word   0                       # 24 - Reserved

.word   _intr_stack             # 28 - Interrupt Stack Pointer

.word   0x00000000              # 32 - Inst. Cache - enable cache

.word   0x00000200              # 36 - Register Cache Configuration

/* ROM system procedure table */

.equ    supervisor_proc, 2

.text

.align 6 /* or .align 2 or .align 4 */
rom_sys_proc_table:

.space  12                      # Reserved

.word   _supervisor_stack       # Supervisor stack pointer

.space  32                                # Preserved

.word   _default_sysproc                  # sysproc 0

.word   _default_sysproc                  # sysproc 1

.word   _default_sysproc                  # sysproc 2

.word   _default_sysproc                  # sysproc 3

.word   _default_sysproc                  # sysproc 4

.word   _default_sysproc                  # sysproc 5

.word   _default_sysproc                  # sysproc 6

.word   _fault_handler + supervisor_proc  # sysproc 7

.word   _default_sysproc                  # sysproc 8

.space  251*4                             # sysproc 9-259
/* Fault Table */

.equ    syscall, 2

.equ    fault_proc, 7

.text

.align  4
boot_flt_table:

.word   (fault_proc<<2) + syscall    # 0-Parallel Fault

.word   0x27f

.word   (fault_proc<<2) + syscall    # 1-Trace Fault

.word   0x27f

.word   (fault_proc<<2) + syscall    # 2-Operation Fault

.word   0x27f
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.word   (fault_proc<<2) + syscall    # 3-Arithmetic Fault

.word   0x27f

.word   0                            # 4-Reserved

.word   0

.word   (fault_proc<<2) + syscall    # 5-Constraint Fault

.word   0x27f

.word   0                            # 6-Reserved

.word   0

.word   (fault_proc<<2) + syscall    # 7-Protection Fault

.word   0x27f

.word   0                            # 8-Reserved

.word   0

.word   0                            # 9-Reserved

.word   0

.word   (fault_proc<<2) + syscall    # 0xa-Type Fault

.word   0x27f

.space  21*8                         # reserved
/* Boot Interrupt Table */

.text
boot_intr_table:

.word   0                        # Pending Priorities

.word   0, 0, 0, 0, 0, 0, 0, 0   # Pending Interrupts         Vectors

.word   _intx, _intx, _intx, _intx, _intx, _intx, _intx, _intx  # 8

.word   _intx, _intx, _intx, _intx, _intx, _intx, _intx, _intx  # 10

.word   _intx, _intx, _intx, _intx, _intx, _intx, _intx, _intx  # 18

.word   _intx, _intx, _intx, _intx, _intx, _intx, _intx, _intx  # 20

.word   _intx, _intx, _intx, _intx, _intx, _intx, _intx, _intx  # 28

.word   _intx, _intx, _intx, _intx, _intx, _intx, _intx, _intx  # 30

.word   _intx, _intx, _intx, _intx, _intx, _intx, _intx, _intx  # 38

.word   _intx, _intx, _intx, _intx, _intx, _intx, _intx, _intx  # 40

.word   _intx, _intx, _intx, _intx, _intx, _intx, _intx, _intx  # 48

.word   _intx, _intx, _intx, _intx, _intx, _intx, _intx, _intx  # 50

.word   _intx, _intx, _intx, _intx, _intx, _intx, _intx, _intx  # 58

.word   _intx, _intx, _intx, _intx, _intx, _intx, _intx, _intx  # 60

.word   _intx, _intx, _intx, _intx, _intx, _intx, _intx, _intx  # 68

.word   _intx, _intx, _intx, _intx, _intx, _intx, _intx, _intx  # 70

.word   _intx, _intx, _intx, _intx, _intx, _intx, _intx, _intx  # 78

.word   _intx, _intx, _intx, _intx, _intx, _intx, _intx, _intx  # 80

.word   _intx, _intx, _intx, _intx, _intx, _intx, _intx, _intx  # 88

.word   _intx, _intx, _intx, _intx, _intx, _intx, _intx, _intx  # 90

.word   _intx, _intx, _intx, _intx, _intx, _intx, _intx, _intx  # 98

.word   _intx, _intx, _intx, _intx, _intx, _intx, _intx, _intx  # a0

.word   _intx, _intx, _intx, _intx, _intx, _intx, _intx, _intx  # a8

.word   _intx, _intx, _intx, _intx, _intx, _intx, _intx, _intx  # b0

.word   _intx, _intx, _intx, _intx, _intx, _intx, _intx, _intx  # b8

.word   _intx, _intx, _intx, _intx, _intx, _intx, _intx, _intx  # c0

.word   _intx, _intx, _intx, _intx, _intx, _intx, _intx, _intx  # c8

.word   _intx, _intx, _intx, _intx, _intx, _intx, _intx, _intx  # d0

.word   _intx, _intx, _intx, _intx, _intx, _intx, _intx, _intx  # d8

.word   _intx, _intx, _intx, _intx, _intx, _intx, _intx, _intx  # e0

Example 11-4.  Startup Routine (init.s)  (Sheet 2 of 4)
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.word   _intx, _intx, _intx, _intx, _intx, _intx, _intx, _intx  # e8

.word   _intx, _intx, _intx, _intx,     0,     0,     0,     0  # f0

.word   _nmi,      0,     0,     0, _intx, _intx, _intx, _intx  # f8

/* START */
/* Processor starts execution here after reset. */

.text

.globl  _start_ip

.globl  _reinit
_start_ip:

mov     0, g14              /* g14 must be 0 for ic960 C compiler */
/* MON960 requires copying the .data area into RAM. If a user application   
* does not require this it is not necessary. 
* Copy the .data into RAM. The .data has been packed in the ROM after the 
* code area. If the copy is not needed (RAM-based monitor), the symbol 
* rom_data can be defined as 0 in the linker directives file.
*/

lda     rom_data, g1            # load source of copy
cmpobe  0, g1, 1f
lda     __Bdata, g2             # load destination
lda     __Edata, g3

 init_data:
ldq     (g1), r4
addo    16, g1, g1
stq     r4, (g2)
addo    16, g2, g2
cmpobl  g2, g3, init_data

1:
/* Initialize the BSS area of RAM. */

lda     __Bbss, g2              # start of bss
lda     __Ebss, g3              # end of bss
movq    0,r4

bss_fill:
stq     r4, (g2)
addo    16, g2, g2
cmpobl  g2, g3, bss_fill

_reinit:
ldconst 0x300, r4               # reinitialize sys control
lda     1f, r5
lda     _ram_prcb, r6
sysctl  r4, r5, r6

1:
lda     _user_stack, pfp
lda     64(pfp), sp        
mov     pfpf, fp         /* new fp */
flushreg

ldconst 0x001f2403, r3 /* PC mask */
ldconst 0x000f0003, r4 /* PC value */
modpc r3, r3, r4 /* Lower interrupt priority */

Example 11-4.  Startup Routine (init.s)  (Sheet 3 of 4)
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/* Clear the IPND register */
lda     0xff008500, g0
mov     0, g1
st      g1,(g0)
callx   _main                    #to main routine

.globl  _intr_stack

.globl  _user_stack

.globl  _supervisor_stack

.bss    _user_stack, 0x0200, 6          # default application stack

.bss    _intr_stack, 0x0200, 6          # interrupt stack

.bss    _supervisor_stack, 0x0600, 6    # fault (supervisor) stack

.text
_fault_handler:

ldconst 'F', g0
call    _co
ret

_default_sysproc:
ret

_intx:
ldconst 'I', g0
call    _co
ret

Example 11-5.  High-Level Startup Code (initmain.c) 

unsigned componentid = 0;

main()
{ /* system- or board-specific code goes here */
} /* this code is called by init.s */
co()
{ /* system or board-specific output routine goes here */
}

Example 11-4.  Startup Routine (init.s)  (Sheet 4 of 4)
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Example 11-6.  Control Table (ctltbl.c) 

/*----------------------------------------------------------*/
/*  ctltbl.c                                                */
/*----------------------------------------------------------*/
#include "init.h"

typedef struct
   {
   unsigned control_reg[28];
   }CONTROL_TABLE;
const CONTROL_TABLE boot_control_table = {

/* Reserved */
0, 0, 0, 0,
/* Interrupt Map Registers */
0, 0, 0,/* Interrupt Map Regs (set by code as needed) */

  0x43bc,   /* ICON
             *               - dedicated mode,
             *               - enabled
             * system_init 0 - falling edge actived,
             * system_init 1 - falling edge actived,
             * system_init 2 - falling edge actived,
             * system_init 3 - falling edge actived,
             * system_init 4 - level-low activated,
             * system_init 5 - falling edge actived,
             * system_init 6 - falling edge actived,
             * system_init 7 - falling edge actived,
             *               - mask unchanged,
             *               - not cached,
             *               - fast,
             */

/* Physical Memory Configuration Registers */

DEFAULT, 0, /* Region 0_1 */
DEFAULT, 0, /* Region 2_3 */
DEFAULT, 0, /* Region 4_5 */
I_O, 0, /* Region 6_7 */
DEFAULT, 0, /* Region 8_9 */
DEFAULT, 0, /* Region 10_11 */
DRAM, 0, /* Region 12_13 */
ROM, 0, /* Region 14_15 */

0, 0, 0, /* Reserved */
0, /* Trace Controls */
1 /* Bus Control Register (Region config. valid) */

};

Errata 10-25-
94 --BWL. 

Added Trace
Controls
section to
Example 11-
6. 
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Example 11-7.  Initialization Boot Record File (rom_ibr.c)  (Sheet 1 of 2)

#include "init.h"

/*

 * NOTE: The ibr must be located at 0xFEFFFF30. Use the linker to 

 * locate this structure. 

 * The boot configuration is always region 14_15, since the IBR

 * must be located there

 */

extern void start_ip();

extern unsigned rom_prcb;

extern unsigned checksum;

#define CS_6 (int) &checksum  /* value calculated in linker */

#define BOOT_CONFIG ROM

const IBR init_boot_record =

   {
BYTE_N(0,BOOT_CONFIG),    /* PMCON14_15 byte 1 */

0,0,0,                    /* reserved set to 0 */

   BYTE_N(1,BOOT_CONFIG),    /* PMCON14_15 byte 2 */

0,0,0,                    /* reserved set to 0 */

   BYTE_N(2,BOOT_CONFIG),    /* PMCON14_15 byte 3 */

0,0,0,                    /* reserved set to 0 */
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   BYTE_N(3,BOOT_CONFIG),    /* PMCON14_15 byte 4 */

0,0,0,                    /* reserved set to 0 */

start_ip,
   &rom_prcb,

   -2,

   0,

   0,

   0,

   0,

   CS_6

   };
   

Example 11-8.  Linker Directive File (init.ld)  (Sheet 1 of 2)

/*----------------------------------------------------------*/
/*  init.ld                                                 */
/*----------------------------------------------------------*/

MEMORY
{
    /*
      Enough space must be reserved in ROM after the text
      section to hold the initial values of the data section.
    */
    rom:     o=0xfefe0000,l=0x1fc00
    rom_dat: o=0xfefffc00,l=0x0300    /* placeholder for .data image */

    ibr:        o=0xfeffff30,l=0x0030
    data:       o=0xa0000000,l=0x0300
    bss:        o=0xa0000300,1=0x7d00
}

Example 11-7.  Initialization Boot Record File (rom_ibr.c)  (Sheet 2 of 2)
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SECTIONS
{

.ibr :
{
  rom_ibr.o
} > ibr

  .text :
{
} > rom

.data :
{
} > data

.bss :
{
} > data

}

rom_data = __Etext;             /* used in init.s as source of .data
   section initial values.  ROM960 
   "move" command places the .data 
   section right after the .text section 

*/

_checksum = -(_rom_prcb + _start_ip);

HLL()

/*Rommer script embedded here: the following creates a ROM image
#*move $0 .text 0               
#*move $0  
#*move $0 .ibr 0x1ff30
#*mkimage $0 $0.ima
#*ihex $0.ima $0.hex mode16
#*map  $0
#*quit
*/

Example 11-8.  Linker Directive File (init.ld)  (Sheet 2 of 2)
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11.6 SYSTEM REQUIREMENTS

The following sections discuss generic hardware requirements for a system built around the i960
Jx processor. This section describes electrical characteristics of the processor’s interface to the
external circuit. The CLKIN, RESET, STEST, FAIL, ONCE, VS S and VCC  pins are described in
detail. Specific signal functions for the external bus signals and interrupt inputs are discussed in
their respective sections in this manual. 

11.6.1 Input Clock (CLKIN)

The clock input (CLKIN) determines processor execution rate and timing. It is designed to be
driven by most common TTL crystal clock oscillators. The clock input must be free of noise and
conform with the specifications listed in the data sheet. CLKIN input capacitance is minimal; for
this reason, it may be necessary to terminate the CLKIN circuit board trace at the processor to
reduce overshoot and undershoot. 

Example 11-9.  Makefile 

/*----------------------------------------------------------*/
/*  makefile                                                */
/*----------------------------------------------------------*/

LDFILE = init
FINALOBJ = init
OBJS = init.o ctltbl.o initmain.o
IBR = rom_ibr.o
LDFLAGS = -AJF -Fcoff -T$(LDFILE) -m
ASFLAGS = -AJF -V
CCFLAGS = -AJF -Fcoff -V -c

init.ima: $(FINALOBJ)
  rom960 $(LDFILE) $(FINALOBJ)

init: $(OBJS) $(IBR)
  gld960 $(LDFLAGS) -o $< $(OBJS)

.s.o:
  gas960c $(ASFLAGS) $<

.c.o:
  gcc960 $(CCFLAGS) $<
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11.6.2 Power and Ground Requirements (VCC, VSS)

The large number of VS S and VCC pins effectively reduces the impedance of power and ground
connections to the chip and reduces transient noise induced by current surges. The i960 Jx
processor is implemented in CHMOS IV technology. Unlike NMOS processes, power dissipation
in the CHMOS process is due to capacitive charging and discharging on-chip and in the
processor’s output buffers; there is almost no DC power component. The nature of this power
consumption results in current surges when capacitors charge and discharge. The processor’s
power consumption depends mostly on frequency. It also depends on voltage and capacitive bus
load (see the 80960JF Embedded 32-bit Processor Data Sheet).

To reduce clock skew on the i960 Jx processor, the VCCPLL  pin for the Phase Lock Loop (PLL)
circuit is isolated on the pinout. The lowpass filter, as shown in Figure 11-9, reduces noise induced
clock jitter and its effects on timing relationships in system designs. The 4.7uf capacitor must be
(low ESR solid tantalum), the 4.7 uf capacitor must be of the type X7R and the node connecting
VCCPL L  must be as short as possible.

Figure 11-9.  VCCPLL  Lowpass Filter

11.6.3 Power and Ground Planes

Power and ground planes must be used in i960 Jx processor systems to minimize noise. Justifi-
cation for these power and ground planes is the same as for multiple VS S and VCC  pins. Power and
ground lines have inherent inductance and capacitance; therefore, an impedance Z=(L/C)1/2. 

Total characteristic impedance for the power supply can be reduced by adding more lines. This
effect is illustrated in Figure 11-10, which shows that two lines in parallel have half the impedance
of one. Ideally, a plane — an infinite number of parallel lines — results in the lowest impedance.
Fabricate power and ground planes with a 1 oz. copper for outer layers and 0.5 oz. copper for inner
layers.

All power and ground pins must be connected to the planes. Ideally, the i960 Jx processor should
be located at the center of the board to take full advantage of these planes, simplify layout and
reduce noise.

100

VCC
(Board Plane)

VCCPLL
(On i960 Jx processors)

Ω

F_CA078A

0.01µf 4.7µf 
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Figure 11-10.  Reducing Characteristic Impedance

11.6.4 Decoupling Capacitors

Decoupling capacitors placed across the processor between VCC and VSS  reduce voltage spikes by
supplying the extra current needed during switching. Place these capacitors close to the device
because connection line inductance negates their effect. Also, for this reason, the capacitors should
be low inductance. Chip capacitors (surface mount) exhibit lower inductance.

11.6.5 I/O Pin Characteristics

The i960 Jx processor interfaces to its system through its pins. This section describes the general
characteristics of the input and output pins. 

11.6.5.1 Output Pins

All output pins on the i960 Jx processor are three-state outputs. Each output can drive a logic 1
(low impedance to VCC); a logic 0 (low impedance to VSS); or float (present a high impedance to
VC C and VSS). Each pin can drive an appreciable external load. The 80960JA/JF Embedded 32-bit
Microprocessor Data Sheet and the 80960JD Embedded 32-bit Microprocessor Data Sheet
describe each pin’s drive capability and provide timing and derating information to calculate output
delays based on pin loading.

Z0  = L0

C0
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2
2C0
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L0
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11.6.5.2 Input Pins

All i960 Jx processor inputs are designed to detect TTL thresholds, providing compatibility with
the vast amount of available random logic and peripheral devices that use TTL outputs. 

Most i960 Jx processor inputs are synchronous inputs (Table 11-8). A synchronous input pin must
have a valid level (TTL logic 0 or 1) when the value is used by internal logic. If the value is not
valid, it is possible for a metastable condition to be produced internally resulting in undeterminate
behavior. The 80960JA/JF Embedded 32-bit Microprocessor Data Sheet and the 80960JD
Embedded 32-bit Microprocessor Data Sheet specify input valid setup and hold times relative to
CLKIN for the synchronized inputs.

i960 Jx processor inputs which are considered asynchronous are internally synchronized to the
rising edge of CLKIN. Since they are internally synchronized, the pins only need to be held long
enough for proper internal detection. In some cases, it is useful to know if an asynchronous input
will be recognized on a particular CLKIN cycle or held off until a following cycle. The i960 Jx
microprocessor data sheet provides setup and hold requirements relative to CLKIN which ensure
recognition of an asynchronous input. The data sheets also supply hold times required for
detection of asynchronous inputs.

The ONCE and STEST inputs are asynchronous inputs. These signals are sampled and latched on
the rising edge of the RESET input instead of CLKIN.

11.6.6 High Frequency Design Considerations

At high signal frequencies and/or with fast edge rates, the transmission line properties of signal
paths in a circuit must be considered. Transmission line effects and crosstalk become significant in
comparison to the signals. These errors can be transient and therefore difficult to debug. In this
section, some high-frequency design issues are discussed; for more information, consult a
reference on high-frequency design.

Table 11-8.  Input Pins

Synchronous Inputs
(sampled by CLKIN)

Asynchronous Inputs
(sampled by CLKIN)

Asynchronous Inputs
(sampled by RESET)

AD31:0 

RDYRCV

HOLD

TDI

TMS

RESET

XINT7:0

NMI

STEST

LOCK\ONCE
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11.6.7 Line Termination

Input voltage level violations are usually due to voltage spikes that raise input voltage levels above
the maximum limit (overshoot) and below the minimum limit (undershoot). These voltage levels
can cause excess current on input gates, resulting in permanent damage to the device. Even if no
damage occurs, many devices are not guaranteed to function as specified if input voltage levels are
exceeded.

Signal lines are terminated to minimize signal reflections and prevent overshoot and undershoot.
Terminate the line if the round-trip signal path delay is greater than signal rise or fall time. If the
line is not terminated, the signal reaches its high or low level before reflections have time to
dissipate and overshoot or undershoot occurs.

For the i960 Jx processor, two termination methods are attractive: AC and series. An AC
termination matches the impedance of the trace, there by eliminating reflections due to the
impedance mismatch.

Series termination decreases current flow in the signal path by adding a series resistor as shown in
Figure 11-11. The resistor increases signal rise and fall times so that the change in current occurs
over a longer period of time. Because the amount of voltage overshoot and undershoot depends on
the change in current over time (V = L di/dt), the increased time reduces overshoot and undershoot.
Place the series resistor as close as possible to the signal source. AC termination is effective in
reducing signal reflection (ringing). This termination is accomplished by adding an RC
combination at the signal’s farthest destination (Figure 11-12). While the termination provides no
DC load, the RC combination damps signal transients.

Selection of termination methods and values is dependent upon many variables, such as output
buffer impedance, board trace impedance and input impedance.

Figure 11-11.   Series Termination
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RS

B
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Figure 11-12.  AC Termination

11.6.8 Latchup

Latchup is a condition in a CMOS circuit in which VCC  becomes shorted to VSS . Intel’s CMOS IV
processes are immune to latchup under normal operation conditions. Latchup can be triggered
when the voltage limits on I/O pins are exceeded, causing internal PN junctions to become
forward biased. The following guidelines help prevent latchup:

• Observe the maximum rating for input voltage on I/O pins.

• Never apply power to an i960 Jx processor pin or a device connected to an i960 Jx 
processor pin before applying power to the i960 Jx processor itself.

• Prevent overshoot and undershoot on I/O pins by adding line termination and by 
designing to reduce noise and reflection on signal lines.

11.6.9 Interference

Interference is the result of electrical activity in one conductor that causes transient voltages to
appear in another conductor. Interference increases with the following factors:

• Frequency Interference is the result of changing currents and voltages. The more frequent 
the changes, the greater the interference. 

• Closeness-of-conductors Interference is due to electromagnetic and electrostatic fields 
whose effects are weaker further from the source.

A C

Source

B

C

R
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Two types of interference must be considered in high frequency circuits: electromagnetic inter-
ference (EMI) and electrostatic interference (ESI).

EMI is caused by the magnetic field that exists around any current-carrying conductor. The
magnetic flux from one conductor can induce current in another conductor, resulting in transient
voltage. Several precautions can minimize EMI:

• Run ground lines between two adjacent lines wherever they traverse a long section of the 
circuit board. The ground line should be grounded at both ends.

• Run ground lines between the lines of an address bus or a data bus if either of the 
following conditions exist:

— The bus is on an external layer of the board.

— The bus is on an internal layer but not sandwiched between power and ground planes that
are at most 10 mils away.

Figure 11-13.  Avoid Closed-Loop Signal Paths

ESI is caused by the capacitive coupling of two adjacent conductors. The conductors act as the
plates of a capacitor; a charge built up on one induces the opposite charge on the other.

The following steps reduce ESI:

• Separate signal lines so that capacitive coupling becomes negligible.

• Run a ground line between two lines to cancel the electrostatic fields.

A

CB
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CHAPTER 12
MEMORY CONFIGURATION

The Bus Control Unit (BCU) includes logic to control many common types of memory subsystems
directly. Every bus access is “formatted” according to the BCU programming. The i960 Jx
processor’s BCU programming model differs from schemes used in other i960 processors.

12.1 Memory Attributes

Every location in memory has associated physical and logical attributes. For example, a specific
location may have the following attributes:

• Physical: Memory is an 8-bit wide ROM

• Logical: Memory is ordered big-endian and data is non-cacheable

In the example above, physical attributes correspond to those parameters that indicate how to
physically access the data. The BCU uses physical attributes to determine the bus protocol and
signal pins to use when controlling the memory subsystem. The logical attributes tell the BCU how
to interpret, format and control interaction of on-chip data caches. The physical and logical
attributes for an individual location are independently programmable. 

12.1.1 Physical Memory Attributes

The only programmable physical memory attribute for the i960 Jx microprocessor is the bus width,
which can be 8-, 16- or 32-bits wide.

For the purposes of assigning memory attributes, the physical address space is partitioned into 8,
fixed 512 Mbyte regions determined by the upper three address bits. The regions are numbered as 8
paired sections for consistency with other i960 processor implementations. Region 0_1 maps to
addresses 0000 0000H to 1FFF FFFFH and region 14_15 maps to addresses E000 0000H to
FFFF FFFFH. The physical memory attributes for each region are programmable through the
PMCON registers. The PMCON registers are loaded from the Control Table. The i960 Jx micro-
processor provides one PMCON register for each region.The descriptions of the PMCON registers
and instructions on programming them are found in Section 12.3.
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12.1.2 Logical Memory Attributes

The i960 Jx provides a mechanism for defining two logical memory templates (LMTs). An LMT
may be used to specify the logical memory attributes for a section (or subset) of a physical
memory subsystem connected to the BCU (e.g., DRAM, SRAM). The logical memory attributes
defined by the i960 Jx are byte ordering and whether the information is cacheable or non-
cacheable in the on-chip data cache.

There are typically several different LMTs defined within a single memory subsystem. For
example, data within one area of DRAM may be non-cacheable while data in another area is
cacheable. Figure 12-1 shows the use of the Control Table (PMCON registers) with logical
memory templates for a single DRAM region in a typical application.

Each logical memory template is defined by programming Logical Memory Configuration
(LMCON) registers. An LMCON Register pair defines a data template for areas of memory that
have common logical attributes. The Jx microprocessor has two pairs of LMCON registers —
defining two separate templates. The extent of each data template is described by an address (on 4
Kbyte boundaries) and an address mask. The address is programmed in the Logical Memory
Address register (LMADR). The mask is programmed in the Logical Memory Mask register
(LMMSK). These two registers constitute the LMCON register pair.

The Default Logical Memory Configuration register is used to provide configuration data for areas
of memory that do not fall within one of the two logical data templates. The DLMCON also
specifies byte-ordering (little endian/big endian) for all data accesses in memory, including on-
chip data RAM.

The LMCON registers and their programming are described in section 12.6. 
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Figure 12-1.  PMCON and LMCON Example

PMCON Registers

Region 14_15

Region 12_13

Region 10_11

Region 8_9

Region 6_7

Region 4_5

Region 2_3

Region 0_1

8000 0000H

FFFF FFFFH

Physical
Regions 10_11 

0000 0000H

Logical Memory
Templates
(LMCON)

LMADR0

LMMAR0

LMADR1

LMMAR1

Non-Cacheable

Physical
Region 8_9

Physical
Regions 0_1 

9FFF FFFFH

Non-Cacheable

32-bit wide
DRAM

Note: DLMCON maps the remaining memory to cacheable.

 to 14_15

to 6_7
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12.2 Differences With Previous i960 Processors

The mechanism described in this chapter in not implemented on the i960 Kx or Sx processors.
Although the i960 Cx processor has a memory configuration mechanism, it is different from the
80960Jx’s in the following ways:

• For the purposes of assigning physical and logical memory attributes, the i960 Cx processor
evenly divides physical memory into 16 contiguous regions. When assigning physical
memory attributes, the Jx divides memory into 8 contiguous, 512 Mbyte regions starting on
512 Mbyte boundaries. The logical memory templates of the i960 Jx processor provide a
programmable association of logical memory addresses, whereas the i960 Cx processor
assigns these attributes to the physical memory regions.

• The i960 Cx processor provides per-region programming of wait states, address pipelining
and bursting. No such mechanisms exist on the 80960Jx. Bus wait states must be generated
using external logic.

12.3 Programming the Physical Memory Attributes (PMCON Registers)

The layout of the Physical Memory Configuration registers, PMCON0_1 to PMCON14_15, is
shown in Figure 12-2, which gives the descriptions of the individual bits. The PMCON registers
reside within memory-mapped control register space. Each PMCON register controls one 512-
Mbyte region of memory according to the mapping shown in Table 12-1

Table 12-1.  PMCON Address Mapping  (Sheet 1 of 2)

Register (Control Table Entry) Region Controlled

PMCON0_1
0000.0000H to 0FFF.FFFFH

and
1000.0000H to 1FFF.FFFFH

PMCON2_3
2000.0000H to 2FFF.FFFFH

and
3000.0000H to 3FFF.FFFFH

PMCON4_5
4000.0000H to 4FFF.FFFFH

and
5000.0000H to 5FFF.FFFFH
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12.3.1 Bus Width

The bus width for a region is controlled by the BW1:0 bits in the PMCON register. The operation
of the i960 Jx processor with different bus width programming options is described in section
15.2.3.1, “Bus Width” (pg. 15-7). 

The bit combination “11” is reserved for the BW1:0 field and can result in unpredictable operation. 

PMCON6_7
6000.0000H to 6FFF.FFFFH

and
7000.0000H to 7FFF.FFFFH

PMCON8_9
8000.0000H to 8FFF.FFFFH

and
9000.0000H to 9FFF.FFFFH

PMCON10_11
A000.0000H to AFFF.FFFFH

and
B000.0000H to BFFF.FFFFH

PMCON12_13
C000.0000H to CFFF.FFFFH

and
D000.0000H to DFFF.FFFFH

PMCON14_15
E000.0000H to EFFF.FFFFH

and
F000.0000H to FFFF.FFFFH

Table 12-1.  PMCON Address Mapping  (Sheet 2 of 2)
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Figure 12-2.  PMCON Register Bit Description

12.4 Physical Memory Attributes at Initialization 

All eight PMCON registers are loaded automatically during system initialization. The initial
values are stored in the Control Table in the Initialization Boot Record (see section 11.3.1, “Initial
Memory Image (IMI)” (pg. 11-9)).

12.4.1 Bus Control (BCON) Register

Immediately after a hardware reset, the PMCON register contents are marked invalid in the Bus
Control (BCON) register. Figure 12-3 shows the BCON register and Control Table Valid (CTV)
bit. Whenever the PMCON entries are marked invalid in BCON, the BCU uses the parameters in
PMCON14_15 for all regions. On a hardware reset, PMCON14_15 is automatically cleared. This
operation configures all regions to an 8-bit bus width. Subsequently, the processor loads all
PMCON registers from the Control Table. The processor then loads BCON from the Control
Table. If BCON.ctv is clear, then PMCON14_15 will remain in use for all bus accesses. If
BCON.ctv is set, the region table is valid and the BCU uses the programmed PMCON values for
each region.

28 24 20 16 12 8 4 031

 
B
W
1

B
W
0

Reserved, 
write to zero

Bus Width
00 = 8-bit
01 = 16-bit
10 = 32-bit bus
11 = reserved (do not use)

Mnemonic Name Bit # Function

BW1-0 Bus Width 23-22

Selects the bus width for a region:
00 = 8-bit, 
01 = 16-bit, 
10 = 32-bit bus
11 = reserved (do not use)

RESERVED - Program to 0
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Figure 12-3.  Bus Control Register (BCON)

12.5 Boundary Conditions for Physical Memory Regions

The following sections describe the operation of the PMCON registers during conditions other
than “normal” accesses.

12.5.1 Internal Memory Locations

The PMCON registers are ignored during accesses to internal memory or memory-mapped
registers. The processor performs those accesses over 32-bit buses, except for local register cache
accesses. The register bus is 128 bits wide.

12.5.2 Bus Transactions Across Region Boundaries

An unaligned bus request that spans region boundaries uses the PMCON settings of both regions.
Accesses that lie in the first region use that region’s PMCON parameters, and the remaining
accesses use the second region’s PMCON parameters.

For example, an unaligned quad word load/store beginning at address 1FFF FFFEH would cross
boundaries from region 0_1 to 2_3. The physical parameters for region 0_1 would be used for the
first 2-byte access and the physical parameters for region 2_3 would be used for the remaining
access.

28 24 20 16 12 8 4 031

 
S
I
R

Reserved, 
write to zero

Configuration Entries in Control Table Valid (BCON.ctv)

P

I
R
P

C
T
V

0 = PMCON entries not valid, default to PMCON14_15 setting.
1 = PMCON entries valid

Internal RAM Protection (BCON.irp)
0 = Internal data RAM not protected from user mode writes

Supervisor Internal RAM Protection (BCON.sirp)
0 = First 64-bytes not protected from supervisor mode writes
1 = First 64-bytes protected from supervisor mode writes

1 = Internal data RAM protected from user mode writes



MEMORY CONFIGURATION

12-8

12.5.3 Modifying the PMCON Registers

An application can modify the value of a PMCON register by using the st or sysctl instruction. If
a st or sysctl instruction is issued when an access is in progress, the current access is completed
before the modification takes effect.

12.6 Programming the Logical Memory Attributes

The bit/bit field definitions for the LMADR1:0 and LMMR1:0 registers are shown in Figure 12-4
and Figure 12-5. LMCON registers reside within the memory-mapped control register space. 

Figure 12-4.  Logical Memory Address Registers (LMADR0-1)

Reserved, 

28 24 20 16 12
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write to zero
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A
1
7

A
1
6

A
1
5

A
1
4

A
1
3

A
1
2

A
3
0

Template Starting Address

Data Cache Enable
0 = Data caching disabled
1 = Data caching enabled

Byte Order (read-only)

D

N

Mnemonic Bit/Bit Field Name
Bit 

Position(s)
Function

A31:12
Template Starting 
Address 31-12

Defines upper 20 bits for the starting address for a logical 
data template. The lower 12 bits are fixed at zero. The 
starting address is modulo 4 Kbytes.

DCEN Data Cache Enable 1

Controls data caching for the template.
0 = Data caching disabled
1 = Data caching enabled

Instruction caching is never affected by this bit.

BE Big Endian Byte Order 0
This is a read-only bit reflecting the value of 
DLMCON.be.

0 = Little endian
1 = Big endian
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Figure 12-5.  Logical Memory Mask Registers (LMMR0-1)

The Default Logical Memory Configuration (DLMCON) register is shown in Figure 12-6. The
BCU uses the parameters in the DLMCON register when the current access does not fall within
one of the two logical memory templates (LMTs). Notice the byte ordering is controlled for the
entire address space by programming the DLMCON register.

Reserved, 

28 24 20 16 12

8 4 0

31

write to zero

Logical Memory Template Enabled
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Mnemonic Bit/Bit Field Name Bit Position(s) Function

MA31:12
Template Address 
Mask

31-12

Defines upper 20 bits for the address mask for a 
logical memory template. The lower 12 bits are 
fixed at zero.

0 = Mask

1 = Do not mask

LMTE
Logical Memory 
Template Enabled

0

Enables/disables logical memory template.

0 = LMT disabled

1 = LMT enabled
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Figure 12-6.  Default Logical Memory Configuration Register (DLMCON)

12.6.1 Defining the Effective Range of a Logical Data Template

For each logical data template, an LMADR register sets the base address using the A31:12 field.
The LMMR register sets the address mask using the MA31:12 field. The effective address range
for a logical data template is defined using the A31:12 field in an LMADRx register and the
MA31:12 field in an LMMRx register. For each access, the upper 20 address bits (A31:12) are
compared against A31:12 in the LMADRx register. Only address bits with corresponding MA bits
set are compared. Address bits with corresponding MA bits cleared (0) are automatically
considered a “match”. The processor will only use the logical data template when all compared
address bits match. Two examples help clarify the operation of the address comparators.

Mnemonic Bit/Bit Field Name Bit Position(s) Function

DCEN Data Cache Enable 1

Controls data caching for areas not within other 
logical memory templates.

0 = Data caching disabled

1 = Write-through caching enabled

Instruction caching is never affected by this bit.

BE
Big Endian Byte 
Order

0

Controls byte order for all accesses, both 
instruction and data, to memory.
0 = Little endian
1 = Big endian

28 24 20 16 12 8 4 031

 

Reserved, 
write to zero

D
C
E

B
E

Byte Order
0 = Little endian
1 = Big endian

Data Cache Enabled
0 = Data caching disabled
1 = Write-through caching enabled

N

Errata (10-20-94) BWL-
Incomplete sentence.

Original text: Address
bits for are compared...

Corrected text: Only
address bits with corre-
sponding MA bits set are
compared.
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• Create a template 64 Kbytes in length beginning at address 0010 0000H and ending at address
0010 FFFFH. Determine the form of the candidate address to match and then program the
LMADR and LMMR registers:

Candidate Address is of form: 0010 XXXX
LMADR <31:12> should be: 0010 0...
LMMR <31:12> should be: FFFF 0...

• Multiple data templates can be created from a single LMADR/LMMR register pair by aliasing
effective addresses. For example, to create sixteen 64 Kbyte templates, each beginning on
modulo 1 Mbyte boundaries starting at 0000 0000H and ending with 00F0 0000H, the
registers are programmed as follows:

Candidate Address is of form: 00X0 XXXX
LMADR <31:12> should be: 0000 0...
LMMR <31:12> should be: FF0F 0...

12.6.2 Selecting the Byte Order

The BCU can automatically convert aligned big endian data in memory into little endian data for
the processor core. The conversion is done transparently in hardware, with no performance penalty.
The BE bit in the DLMCON register controls the default byte ordering for the entire address
address space, including internal data RAM but excluding memory-mapped registers. Instruction
fetches and data accesses are automatically converted to little endian format when they are fetched
from external memory and the programmed default byte-order (DLMCON.be) is big-endian. 

The recommended, portable way to determine the byte-ordering associated with a logical memory
template is to read the appropriate LMADR. The i960 Jx microprocessor supports this method by
always ensuring that the DLMCON.be bit is reflected in bit zero of LMADR0 and LMADR1 (also
labelled as LMADR.be) when they are read. Any attempts to write bit zero of an LMADR are
ignored. 

Great care should be exercised when dynamically changing the processor’s homogenous byte
order. See section 12.6.8, “Dynamic Byte Order Changing” (pg. 12-13) for an instruction code
example.

Byte-ordering is not applicable to memory-mapped registers since they are always accessed as
words.
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12.6.3 Data Caching Enable

Enabling and disabling data caching for an LMT is controlled via the DCEN bit in the LMADR
register. Likewise, the DCEN bit in DLMCON enables and disables data-caching for regions of
memory that are not covered by the LMCON registers. The DCEN bit has no effect on the
instruction cache.

12.6.4 Enabling the Logical Memory Template

The LMTE bit activates the logical data template in the LMMR register for the programmed range.

12.6.5 Initialization

Immediately following a hardware reset, all LMTs are disabled. The LMTE bit in each of the
LMMR registers is cleared (0) and all other bits are undefined. Immediately after a hardware reset
the Default Logical Memory Control register (DLMCON) has the values shown in Table 12-2.

Application software may initialize and enable the logical memory template after hardware reset.
The registers are not modified by software initialization.

12.6.6 Boundary Conditions for Logical Memory Templates

The following sections describe the operation of the LMT registers during conditions other than
“normal” accesses. See Chapter 4, CACHE AND ON-CHIP DATA RAM for a treatment of data
cache coherency when modifying an LMT.

12.6.6.1 Internal Memory Locations

The LMT registers are not used during accesses to memory-mapped registers. Internal data RAM
locations are never cached; LMT bits controlling caching are ignored for data RAM accesses.
However, the byte-ordering of the internal data RAM is controlled by DLMCON.be.

Table 12-2.  DLMCON Values at Reset

DLMCON Bit Value Upon Reset Microcode

DCEN (Data Caching Enable) 0 (Data Caching Disabled)

BE (Big-Endian)
Initialized from PMCON14_15 image 
in IBR bit 31
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12.6.6.2 Overlapping Logical Data Template Ranges

Logical data templates that specify overlapping ranges are not allowed. When an access is
attempted that matches more than one enabled LMT range, the operation of the access becomes
undefined.

To establish different logical memory attributes for the same address range, program non-
overlapping logical ranges, then use partial physical address decoding.

12.6.6.3 Accesses Across LMT Boundaries

Accesses that cross LMT boundaries should be avoided. These accesses are unaligned and broken
into a number of smaller aligned accesses, which reside in one or the other LMT, but not both.
Each smaller access is completed using the parameters of the LMT in which it resides.

12.6.7 Modifying the LMT Registers

An LMT register can be modified using st or sysctl instructions. Both instructions ensure data
cache coherency and order the modification with previous and subsequent data accesses.

12.6.8 Dynamic Byte Order Changing

Programmed byte order changes take effect immediately. The next instruction fetch will use the
new byte order setting. This byte-swapping usually results in errors because the current instruction
stream uses the previous byte order setting.

Dynamically changing the byte order to perform limited operations is possible if the code sequence
is locked in the instruction cache. The application must ensure that code executes from within the
locked region (including faults and interrupts) while the opposite byte order is in effect. The
following example illustrates this method:

safe_addr: lda safe_addr,r4
mov 1,r5
icctl 0x3,r4,r5 # Lock code in cache.
ld DLMCON_MM,r6
notbit 0,r6,r7
st r7,DLMCON_MM # Toggle byte order.

. . .

<Short code sequence>

. . .
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st r6,DLMCON_MM # Restore byte order.
icctl 2,0,r6 # Invalidate cache

# to unlock code.

In most cases, it is safer to retain the original byte order and use the bswap instruction to convert
data between little-endian and big-endian byte order.
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CHAPTER 13
INTERRUPT CONTROLLER

This chapter contains interrupt controller information that is of particular importance to the system
implementor. The method for handling interrupt requests from user code is described in
CHAPTER 8, INTERRUPTS. Specifically, this chapter describes the i960® Jx processor’s
facilities for requesting and posting interrupts, the programmer’s interface to the on-chip interrupt
controller, implementation, latency and how to optimize interrupt performance. 

13.1 OVERVIEW

The interrupt controller’s primary functions are to provide a flexible, low-latency means for
requesting and posting interrupts and to minimize the core’s interrupt handling burden. The
interrupt controller handles the posting of interrupts requested by hardware and software sources.
The interrupt controller, acting independently from the core, compares the priorities of posted
interrupts with the current process priority, off-loading this task from the core.

The interrupt controller provides the following features for managing hardware-requested
interrupts:

• Low latency, high throughput handling.

• Support of up to 240 external sources.

• Eight external interrupt pins, one non-maskable interrupt pin, two internal timer units (TU)
sources for detection of hardware-requested interrupts.

• Edge or level detection on external interrupt pins.

• Debounce option on external interrupt pins.

The user program interfaces to the interrupt controller with six memory-mapped control registers.
The interrupt control register (ICON) and interrupt map control registers (IMAP0-IMAP2) provide
configuration information. The interrupt pending (IPND) register posts hardware-requested
interrupts. The interrupt mask (IMSK) register selectively masks hardware-requested interrupts.
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13.2 MANAGING INTERRUPT REQUESTS

The i960 processor architecture provides a consistent interrupt model, as required for interrupt
handler compatibility between various implementations of the i960 processor family. The archi-
tecture, however, leaves the interrupt request management strategy to the specific i960 processor
family implementations. In the i960 Jx processors, the programmable on-chip interrupt controller
transparently manages all interrupt requests (Figure 13-1). These requests originate from:

• Eight-bit external interrupt pins XINT7:0

• Two internal timer unit interrupts (TINT1:0)

• Non-maskable interrupt pin NMI

• sysctl instruction execution (software-initiated interrupts)

13.2.1 External Interrupt

External interrupt pins can be programmed to operate in three modes:

1. Dedicated mode: the pins may be individually mapped to interrupt vectors. 

2. Expanded mode: the pins may be interpreted as a bit field which can request any of the 240
possible external interrupts that the i960 processor family supports.

3. Mixed mode: five pins operate in expanded mode and can request thirty-two different
interrupts, and three pins operate in dedicated mode. 

Dedicated-mode requests are posted in the Interrupt Pending Register (IPND). The processor’s
ICU does not post expanded-mode requests. 

13.2.2 Timer Interrupt

Each of the two timer units has an associated interrupt to allow the application to accept or post the
interrupt request. Timer unit interrupt requests are always handled as dedicated-mode interrupt
requests.

13.2.3 Non-Maskable Interrupt (NMI)

The NMI pin generates an interrupt for implementation of critical interrupt routines. NMI provides
an interrupt that cannot be masked and that has a priority of 31. The interrupt vector for NMI
resides in the interrupt table as vector number 248. During initialization, the core caches the vector
for NMI on-chip, to reduce NMI latency. The NMI vector is cached in location 0H of internal data
RAM. 
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The core immediately services NMI requests. While servicing an NMI, the core does not respond
to any other interrupt requests — even another NMI request. The processor remains in this non-
interruptible state until any return-from-interrupt (in supervisor mode) occurs. An interrupt request
on the NMI pin is always falling-edge detected. (Note that a return-from-interrupt in user mode
does not unblock NMI events and should be avoided by software.)

13.2.4 Software Interrupt

The application program may use the sysctl instruction to request interrupt service. The vector that
sysctl requests is serviced immediately or posted in the interrupt table’s pending interrupts section,
depending upon the current processor priority and the request’s priority. The interrupt controller
caches the priority of the highest priority interrupt posted in the interrupt table.

The processor cannot request vector 248 (NMI) as a software interrupt.

13.2.5 Interrupt Prioritization Model

The interrupt controller continuously compares the processor’s priority to the priorities of the
highest-posted software interrupt and the highest-pending hardware interrupt. The core is
interrupted when a pending interrupt request is higher than the processor priority or has a priority
of 31. (Note that a priority-31 interrupt handler can be interrupted by another priority-31 interrupt.)
Note that there are no priority-0 interrupts, since such an interrupt would never have a priority
higher than the current process, and would therefore never be serviced.

In the event that both hardware- and software-requested interrupts are posted at the same level, the
hardware interrupt is delivered first while the software interrupt is left pending. As a result, if both
priority-31 hardware- and software-requested interrupts are pending, control will first be
transferred to the interrupt handler for the hardware-requested interrupt, however, before the first
instruction of that handler can be executed, the pending software-requested interrupt will be
delivered and cause control to be transferred to the corresponding interrupt handler. 

Example 13-1.  Interrupt Resolution

/* Model used to resolve interrupts between execution of all macro instructions */
if (NMI_pending && !block_NMI)
   { block_NMI = true;  /* Reset on return from NMI INTR handler */
     vecnum = 248; vector_addr = 0;
     PC.priority = 31;
     push_local_register_set();
     goto common_interrupt_process; }
if (ICON.gie == enabled) {
   expand_HW_int();
   temp = max(HW_Int_Priority, SW_Int_Priority);
   if (temp == 31 || temp > PC.priority)
      { PC.priority = temp;
        if (SW_Int_Priority > HW_Int_Priority) goto Deliver_SW_Int;
        else{ vecnum = HW_vecnum; goto Deliver_HW_Int;}
       }
    }
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Figure 13-1.  Interrupt Controller
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13.2.6 Interrupt Controller Modes

The eight external interrupt pins can be configured for one of three modes: expanded, dedicated or
mixed. Each mode is described in the subsections that follow.

13.2.6.1 Dedicated Mode

In dedicated mode, each external interrupt pin is assigned a vector number. Vector numbers that
may be assigned to a pin are those with the encoding PPPP 00102 (Figure 13-2), where bits marked
P are programmed with bits in the interrupt map (IMAP) registers. This encoding of programmable
bits and preset bits can designate 15 unique vector numbers, each with a unique, even-numbered
priority. (Vector 0000 00102 is undefined; it has a priority of 0.)

Dedicated-mode interrupts are posted in the interrupt pending (IPND) register. Single bits in the
IPND register correspond to each of the eight dedicated external interrupt inputs, plus the two
timer unit inputs to the interrupt controller. The interrupt mask (IMSK) register selectively masks
each of the dedicated-mode interrupts. The IMSK register can optionally be saved and cleared
when a dedicated interrupt is serviced. This allows other hardware-generated interrupts to be
locked out until the mask is restored. See section 13.3.3, “Programmer’s Interface” (pg. 13-11) for
a further description of the IMSK, IPND and IMAP registers.

Interrupt vectors are assigned to timer unit inputs in the same way external pins are assigned
dedicated-mode vectors. The timer unit interrupts are always dedicated-mode interrupts. 

 

Figure 13-2.  Dedicated Mode
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13.2.6.2 Expanded Mode

In expanded mode, up to 240 interrupts can be requested from external sources. Multiple external
sources are externally encoded into the 8-bit interrupt vector number. This vector number is then
applied to the external interrupt pins (Figure 13-3), with the XINT0 pin representing the least-
significant bit and XINT7 the most significant bit of the number. Note that external interrupt pins
are active low; therefore, the inverse of the vector number is actually applied to the pins.

In expanded mode, external logic is responsible for posting and prioritizing external sources.
Typically, this scheme is implemented with a simple configuration of external priority encoders.
The interrupt source must remain asserted until the processor services the interrupt and explicitly
clears the source. As shown in Figure 13-4, simple, combinational logic can handle prioritization
of the external sources when more than one expanded mode interrupt is pending. 

An expanded mode interrupt source must remain asserted until the processor services the interrupt
and explicitly clears the source. External-interrupt pins in expanded mode are always active low
and level-detect. The interrupt controller ignores vector numbers 0 though 7. The output of the
external priority encoders in Figure 13-4 can use the 0 vector to indicate that no external interrupts
are pending.

The low-order four bits of IMAP0 are used to internally buffer the expanded-mode interrupt.
XINT7:4 are placed in IMAP0[3:0]; XINT3:0 are latched in a special register for use in further
arbitrating the interrupt and in selecting the interrupt handler. 

IMSK register bit 0 provides a global mask for all expanded interrupts. The remaining bits (1-7)
must be set to 0 in expanded mode. The mask bit can optionally be saved and cleared when an
expanded mode interrupt is serviced. This allows other hardware-requested interrupts to be locked
out until the mask is restored. IPND register bits 0-7 have no function in expanded mode, since
external logic is responsible for posting interrupts.
 

Figure 13-3.  Expanded Mode

PPPP

PPPP

00102

00102

TINT0

TINT1

8

4 LSB4 MSB

IMAP Control Registers Hard-wired Vector Offset

Highest Selected
Vector Number

XINT7:0



INTERRUPT CONTROLLER

13-7

13

Figure 13-4.  Implementation of Expanded Mode Sources
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13.2.6.3 Mixed Mode

In mixed mode, pins XINT0 through XINT4 are configured for expanded mode. These pins are
encoded for the five most-significant bits of an expanded-mode vector number; the three least-
significant bits of the vector number are set internally to 0102. Pins XINT5 through XINT7 are
configured for dedicated mode.

Do not write to the low-order four bits of IMAP0 as these bits are used to buffer the expanded-
mode interrupt internally. XINT4:1 are placed in IMAP0[3:0]; XINT0 is latched in a special
register for use in further arbitrating the interrupt and in selecting the interrupt handler.

IMSK register bit 0 is a global mask for the expanded-mode interrupts; bits 5 through 7 mask the
dedicated interrupts from pins XINT5 through XINT7, respectively. IMSK register bits 1-4 must
be set to 0 in mixed mode. The IPND register posts interrupts from the dedicated-mode pins
XINT7:5. IPND register bits that correspond to expanded-mode inputs are not used.

13.2.7 Saving the Interrupt Mask

Whenever an interrupt requested by XINT7:0 or by the internal timers is serviced, the IMSK
register is automatically saved in register r3 of the new local register set allocated for the interrupt
handler. After the mask is saved, the IMSK register is optionally cleared. This allows all interrupts
except NMIs to be masked while an interrupt is being serviced. Since the IMSK register value is
saved, the interrupt procedure can restore the value before returning. The option of clearing the
mask is selected by programming the ICON register as described in section 13.3.4, “Interrupt
Control Register (ICON)” (pg. 13-12). Several options are provided for interrupt mask handling:

1. Mask is unchanged.

2. Clear for dedicated-mode sources only.

3. Clear for expanded-mode sources only.

4. Clear for all hardware-requested interrupts (dedicated and expanded mode).

Options 2 and 3 are used in mixed mode, where both dedicated-mode and expanded-mode inputs
are allowed. Timer unit interrupts are always dedicated-mode interrupts.

Note that if the same interrupt is requested simultaneously by a dedicated- and an expanded-mode
source, the interrupt is considered an expanded-mode interrupt and the IMSK register is handled
accordingly.

Errata 2-3-95, BWL:

Section 13.2.6.3, Paragraph
2, Sentence 1 formerly read,
“The low-order four bits of
IMAP0 are used to buffer the
expanded-mode interrupt
internally.” The sentence
now explicitly tells the user
not to write to the low-order
four bits of IMAP0.
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The IMSK register must be saved and cleared when expanded mode inputs request a priority-31
interrupt. Priority-31 interrupts are interrupted by other priority-31 interrupts. In expanded mode,
the interrupt pins are level-activated. For level-activated interrupt inputs, instructions within the
interrupt handler are typically responsible for causing the source to deactivate. If these priority-31
interrupts are not masked, another priority-31 interrupt will be signaled and serviced before the
handler is able to deactivate the source. The first instruction of the interrupt handling procedure is
never reached, unless the option is selected to clear the IMSK register on entry to the interrupt.

Another use of the mask is to lock out other interrupts when executing time-critical portions of an
interrupt handling procedure. All hardware-generated interrupts are masked until software
explicitly replaces the mask.

The processor does not restore r3 to the IMSK register when the interrupt return is executed. If the
IMSK register is cleared, the interrupt handler must restore the IMSK register to enable interrupts
after return from the handler. 

13.3 EXTERNAL INTERFACE DESCRIPTION

This section describes the physical characteristics of the interrupt inputs. The i960 Jx processors
provide eight external interrupt pins and one non-maskable interrupt pin for detecting external
interrupt requests. The eight external pins can be configured as dedicated inputs, where each pin is
capable of requesting a single interrupt. The external pins can also be configured in an expanded
mode, where the value asserted on the external pins represents an interrupt vector number. In this
mode, up to 240 values can be directly requested with the interrupt pins. The external interrupt pins
can be configured in mixed mode. In this mode, some pins are dedicated inputs and the remaining
pins are used in expanded mode.

13.3.1 Pin Descriptions

The interrupt controller provides nine interrupt pins:

XINT7:0 External Interrupt (input) - These eight pins cause interrupts to be requested.
Pins are software configurable for three modes: dedicated, expanded, mixed.
Each pin can be programmed as an edge- or level-detect input. Also, a debounce
sampling mode for these pins can be selected under program control. 

NMI Non-Maskable Interrupt (input) - This edge-activated pin causes a non-maskable
interrupt event to occur. NMI is the highest priority interrupt recognized. A
debounce sampling mode for NMI can be selected under program control. This
pin is internally synchronized.

External interrupt pin functions XINT7:0 depend on the operation mode (expanded, dedicated or
mixed) and on several other options selected by setting ICON register bits.
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13.3.2 Interrupt Detection Options

The XINT7:0 pins can be programmed for level-low or falling-edge detection when used as
dedicated inputs. All dedicated inputs plus the NMI pin are programmed (globally) for fast
sampling or debounce sampling. Expanded-mode inputs are always sampled in debounce mode.
Pin detection and sampling options are selected by programming the ICON register.

When falling-edge detection is enabled and a high-to-low transition is detected, the processor sets
the corresponding pending bit in the IPND register. The processor clears the IPND bit upon entry
into the interrupt handler. 

When a pin is programmed for low-level detection, the pin’s bit in the IPND register remains set as
long as the pin is asserted (low). The processor attempts to clear the IPND bit on entry into the
interrupt handler; however, if the active level on the pin is not removed at this time, the bit in the
IPND register remains set until the source of the interrupt is deactivated and the IPND bit is
explicitly cleared by software. Software may attempt to clear an interrupt pending bit before the
active level on the corresponding pin is removed. In this case, the active level on the interrupt pin
causes the pending bit to remain asserted. 

After the interrupt signal is deasserted, the handler then clears the interrupt pending bit for that
source before return from handler is executed. If the pending bit is not cleared, the interrupt is re-
entered after the return is executed. 

Example 13-2 demonstrates how a level detect interrupt is typically handled. The example
assumes that the ld from address “timer_0,” deactivates the interrupt input.

Example 13-2.  Return from a Level-detect Interrupt

The debounce sampling mode provides a built-in filter for noisy or slow-falling inputs. The
debounce sampling mode requires that a low-level is stable for seven consecutive cycles before the
expanded mode vector is resolved internally. Expanded mode interrupts are always sampled using
the debounce sampling mode. This allows for skew time between changing outputs of external
priority encoders.

# Clear level-detect interrupts before return from handler
lda IPND_MM, g1
ld timer_0, g0 # Get timer value and clear TMRO
lda 0x1000, g2

wait:
mov 0, g3
atmod g1, g2, g3
bbs 0xC, g3, wait
ret # Return from handler
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Figure 13-5 shows how a signal is sampled in each mode. The debounce-sampling option adds
several clocks to an interrupt’s latency due to the multiple clocks of sampling. Inputs are sampled
once every two CLKIN cycles (external bus clock).

Interrupt pins are asynchronous inputs. Setup or hold times relative to CLKIN are not needed to
ensure proper pin detection. Note in Figure 13-5. that interrupt inputs are sampled once every two
CLKIN cycles. For practical purposes, this means that asynchronous interrupting devices must
generate an interrupt signal that is asserted for at least three CLKIN cycles for the fast sampling
mode or seven CLKIN cycles for the debounce sampling mode. See the 80960JA/JF Embedded 32-
bit Microprocessor Data Sheet or the 80960JD Embedded 32-bit Microprocessor Data Sheet for
setup and hold specifications that guarantee detection of the interrupt on particular edges of
CLKIN. These specification are useful in designs that use synchronous logic to generate interrupt
signals to the processor. These specification must also be used to calculate the minimum signal
width, as shown in Figure 13-5. 

Figure 13-5.  Interrupt Sampling
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13.3.4 Interrupt Control Register (ICON)

The ICON register (see Figure 13-6) is a 32-bit memory-mapped control register, that sets up the
interrupt controller. Software can manipulate this register using the load/store type instructions.
The ICON register is also automatically loaded at initialization from the control table in external
memory. Figure 13-6 shows the layout of the ICON register.

Table 13-1.  Interrupt Control Registers Memory-Mapped Addresses

Register Name Description Address

IMAP0 Interrupt Map Register 0 FF00 8520H

IMAP1 Interrupt Map Register 1 FF00 8524H

IMAP2 Interrupt Map Register 2 FF00 8528H

ICON Interrupt Control Register FF00 8510H

IPND Interrupt Pending Register FF00 8500H

IMSK Interrupt Mask Register FF00 8504H
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Figure 13-6.  Interrupt Control (ICON) Register

The interrupt mode field (bits 0 and 1) determines the operation mode for the external interrupt
pins (XINT7:0) — dedicated, expanded or mixed. 

The signal detection mode bits (bits 2 - 9) determine whether the signals on the individual external
interrupt pins (XINT7:0) are level-low activated or falling-edge activated. Expanded-mode inputs
are always level-detected; the NMI input is always edge-detected — regardless of the bit’s value.

The global interrupts enable bit (bit 10) globally enables or disables the external interrupt pins and
timer unit inputs. It does not affect the NMI pin. This bit performs the same function as clearing the
mask register. The global interrupts enable bit is also changed indirectly by the use of the following
instructions: inten, intdis, intctl.

Interrupt Mode - ICON.im
(00) Dedicated
(01) Expanded
(10) Mixed
(11) Reserved

Signal Detection Mode - ICON.sdm
 (0)  Level-low activated
 (1)  Falling-edge activated

Global Interrupts Enable - ICON.gie
 (0)  Enabled
 (1)  Disabled

Mask Operation - ICON.mo
(00) Move to r3, mask unchanged
(01) Move to r3 and clear for dedicated mode interrupts
(10) Move to r3 and clear for expanded mode interrupts
(11) Move to r3 and clear for dedicated and expanded

Vector Cache Enable - ICON.vce
 (0) Fetch from external memory
 (1) Fetch from internal RAM

Sampling Mode -ICON.sm
 (0)  debounce
 (1)  fast

Reserved
(Initialize to 0)

Interrupt Control Register (ICON)

28 24 20 16 12 8 4 031

 
s
m

v
c
e

m
o
1

m
o
0

g
i
e

s
d

7
m

s
d
m
6

s
d
m
5

s
s
m
4

s
d
m

s
d
m

3 2

s
d
m
1

s
d
m
0

i
m
1

i
m
0

mode interrupts



INTERRUPT CONTROLLER

13-14

The mask-operation field (bits 11, 12) determines the operation the core performs on the mask
register when a hardware-generated interrupt is serviced. On an interrupt, the IMSK register is
either unchanged; cleared for dedicated-mode interrupts; cleared for expanded-mode interrupts; or
cleared for both dedicated- and expanded-mode interrupts. IMSK is never cleared for NMI or
software interrupts.

The vector cache enable bit (bit 13) determines whether interrupt table vector entries are fetched
from the interrupt table or from internal data RAM. Only vectors with the four least-significant
bits equal to 00102 may be cached in internal data RAM. 

The sampling-mode bit (bit 14) determines whether dedicated inputs and NMI pin are sampled
using debounce sampling or fast sampling. Expanded-mode inputs are always detected using
debounce mode.

Bits 15 through 31 are reserved and must be set to 0 at initialization.

13.3.5 Interrupt Mapping Registers (IMAP0-IMAP2)

The IMAP registers (Figure 13-7) are three 32-bit registers (IMAP0 through IMAP2). These
register’s bits are used to program the vector number associated with the interrupt source when the
source is connected to a dedicated-mode input. IMAP0 and IMAP1 contain mapping information
for the external interrupt pins (four bits per pin). IMAP2 contains mapping information for the
timer-interrupt inputs (four bits per interrupt).

Each set of four bits contains a vector number’s four most-significant bits; the four least-
significant bits are always 00102. In other words, each source can be programmed for a vector
number of PPPP 00102, where “P” indicates a programmable bit. For example, IMAP0 bits 4
through 7 contain mapping information for the XINT1 pin. If these bits are set to 01102, the pin is
mapped to vector number 0110 00102 (or vector number 98).

Software can access the mapping registers using load/store type instructions. The mapping
registers are also automatically loaded at initialization from the control table in external memory.
Note that bits 16 through 31 of IMAP0 and IMAP1 are reserved and should be set to 0 at initial-
ization. Bits 0-15 and 24-31 of IMAP2 are also reserved and should be set to 0.
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Figure 13-7.  Interrupt Mapping (IMAP0-IMAP2) Registers
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13.3.5.1 Interrupt Mask (IMSK) and Interrupt Pending (IPND) Registers

The IMSK and IPND registers (see Figure 13-9) are both memory-mapped registers. Bits 0
through 7 of these registers are associated with the external interrupt pins (XINT0 through XINT7)
and bits 12 and 13 are associated with the timer-interrupt inputs (TMR0 and TMR1). All other bits
are reserved and should be set to 0 at initialization.

Figure 13-8.  Interrupt Pending (IPND) Register

The IPND register posts dedicated-mode interrupts originating from the eight external dedicated
sources (when configured in dedicated mode) and the two timer sources. Asserting one of these
inputs causes a 1 to be latched into its associated bit in the IPND register. In expanded mode, bits 0
through 7 of this register are not used and should not be modified; in mixed mode, bits 0 through 4
are not used and should not be modified.

The mask register provides a mechanism for masking individual bits in the IPND register. An
interrupt source is disabled if its associated mask bit is set to 0.

Mask register bit 0 has two functions: it masks interrupt pin XINT0 in dedicated mode and it
masks all expanded-mode interrupts globally in expanded and mixed modes. In expanded mode,
bits 1 through 7 are not used and should contain zeros only; in mixed mode, bits 1 through 4 are
not used and should contain zeros only.

When delivering a hardware interrupt, the interrupt controller conditionally clears IMSK based on
the value of the ICON.mo bit. Note that IMSK is never cleared for NMI or software interrupt.
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RESERVED
(INITIALIZE TO 0)

Figure 13-9.  Interrupt Mask (IMSK) Registers
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Software can read and write IMSK using any memory-format instruction. Software can also use
any memory format instruction to write the IPND register; however to read IPND, software must
specify a read-modify-write operation using the atomic-modify (atmod) instruction. The atomic-
modify operation is required because a memory format instruction could return a posted interrupt
priority higher than the current process priority. This can occur if an interrupt is posted
immediately before a memory format instruction is executed. Executing an atmod on one of these
registers causes the interrupt controller to perform regular interrupt processing (including using or
automatically updating IPND and IMSK) either before or after, but, not during the read-modify-
write operation on that register. This requirement ensures that modifications to IPND and IMSK
take effect cleanly, completely, and at a well-defined point. Note that the processor does not assert
the LOCK pin externally when executing an atomic instruction to IPND and IMSK.

When the processor core handles a pending interrupt, it attempts to clear the bit that is latched for
that interrupt in the IPND register before it begins servicing the interrupt. If that bit is associated
with an interrupt source that is programmed for level detection and the true level is still present,
the bit remains set. Because of this, the interrupt routine for a level-detected interrupt should clear
the external interrupt source and explicitly clear the IPND bit before return from the handler is
executed.

An alternative method of posting interrupts in the IPND register, other than through the external
interrupt pins, is to set bits in the register directly using an atmod instruction. This operation has
the same effect as requesting an interrupt through the external interrupt pins. The bit set in the
IPND register must be associated with an interrupt source that is programmed for dedicated-mode
operation.

13.3.5.2 Default and Reset Register Values

The ICON and IMAP2:0 control registers are loaded from the control table in external memory
when the processor is initialized or reinitialized. The control table is described in section 11.3.3,
“Control Table” (pg. 11-19). The IMSK register is set to 0 when the processor is initialized
(RESET is deasserted). The IPND register value is undefined after a power-up initialization (cold
reset). The application is responsible for clearing this register before any mask register bits are set;
otherwise, unwanted interrupts may be triggered. For a reset while power is on (warm reset), the
pending register value is retained.

13.3.6 Interrupt Controller Register Access Requirements

Like all other load accesses from internal memory-mapped registers, once issued, a load
instruction that accesses an interrupt register has a latency of one internal processor cycle. 

A store access to an interrupt register is synchronous with respect to the next instruction; that is,
the operation completes fully and all state changes take effect before the next instruction begins
execution. 
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Interrupts can be enabled and disabled quickly by the new intdis and inten instructions, which take
four cycles each. intctl takes a few cycles longer because it returns the previous interrupt enable
value.

13.4 INTERRUPT OPERATION SEQUENCE

The interrupt controller, microcode and core resources handle all stages of interrupt service.
Interrupt service is handled in the following stages:

Request Interrupt — In the i960® Jx microprocessor, the programmable on-chip interrupt
controller transparently manages all interrupt requests. Interrupts are generated by hardware
(external events) or software (the application program). Hardware requests are signaled on the 8-
bit external interrupt port (XINT7:0), the non-maskable interrupt pin (NMI) or the two timer
channels. Software interrupts are signaled with the sysctl instruction with post-interrupt message
type.

Posting Interrupts — When an interrupt is requested, the interrupt is either serviced immediately or
saved for later service, depending on the interrupt’s priority. Saving the interrupt for later service is
referred to as posting. Once posted, an interrupt becomes a pending interrupt. Hardware and
software interrupts are posted differently:

• Hardware interrupts are posted by setting the interrupt’s assigned bit in the interrupt pending
(IPND) memory mapped register

• Software interrupts are posted by setting the interrupt’s assigned bit in the interrupt table’s
pending priorities and pending interrupts fields

Check Pending Interrupts — The Interrupt Control Unit (ICU) compares each pending interrupt’s
priority with the current process priority. If process priority changes, posted interrupts of higher
priority are then serviced. Comparing the process priority to posted interrupt priority is handled
differently for hardware and software interrupts. Each hardware interrupt is assigned a specific
priority when the processor is configured. The priority of all posted hardware interrupts is
continually compared to the current process priority. Software interrupts are posted in the interrupt
table in external memory. The highest priority posted in this table is also saved in an on-chip
software priority register; this register is continually compared to the current process priority.

Servicing Interrupts — If the process priority falls below that of any posted interrupt, the interrupt
is serviced. The comparator signals the core to begin a microcode sequence to perform the
interrupt context switch and branch to the first instruction of the interrupt routine.

Figure 13-1 illustrates interrupt controller function. For best performance, the interrupt flow for
hardware interrupt sources is implemented entirely in hardware.
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The comparator only signals the core when a posted interrupt is a higher priority than the process
priority. Because the comparator function is implemented in hardware, microcode cycles are never
consumed unless an interrupt is serviced.

13.4.1 Setting Up the Interrupt Controller

This section provides an example of setting up the interrupt controller. The following example
describes how the interrupt controller can be dynamically configured after initialization. 

Example 13-3 sets up the interrupt controller for expanded-mode operation. Initially the IMSK
register is masked to allow for setup. A value which selects expanded-mode operation is loaded
into the ICON register and the IMSK is unmasked.

Example 13-3.  Programming the Interrupt Controller for Expanded Mode

13.5 OPTIMIZING INTERRUPT PERFORMANCE

Figure 13-10 depicts the path from interrupt source to interrupt service routine. This section
discusses interrupt performance in general and suggests techniques the application can use to get
the best interrupt performance.

13.5.1 Interrupt Service Latency

The established measure of interrupt performance is the time required to perform an interrupt task
switch, which is known as interrupt service latency. Latency is the time measured between
activation of an interrupt source and execution of the first instruction for the accompanying
interrupt-handling procedure.

Interrupt latency depends on interrupt controller configuration and the instruction being executed
at the time of the interrupt. The processor also has a number of cache options which reduce
interrupt latency. In the discussion that follows, interrupt latency is expressed as a number of bus
clock cycles, and reflects differences between the 80960JA/JF and the 80960JD due to the
80960JD processor’s clock-doubled core.

# Example expanded mode setup . . .
mov 0, g0
mov 1, g1
st g0,IMSK # mask, IMSK MMR at 0XFF008504
st g1,ICON
st g1,IMSK # unmask expanded interrupts
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13.5.2 Features to Improve Interrupt Performance

The i960 Jx processor implementation employs four methods to specifically reduce interrupt
latency:

• Caching interrupt vectors on-chip

• Caching of interrupt handling procedure code

• Reserving register frames in the local register cache

• Caching the interrupt stack in the data cache

13.5.2.1 Vector Caching Option

To reduce interrupt latency, the i960 Jx processors allow some interrupt table vector entries to be
cached in internal data RAM. When the vector cache option is enabled and an interrupt request
that has a cached vector to be serviced, the controller fetches the associated vector from internal
RAM rather than from the interrupt table in memory. 

Interrupts with a vector number with the four least-significant bits equal to 00102 can be cached.
The vectors that can be cached coincide with the vector numbers that are selected with the
mapping registers and assigned to dedicated-mode inputs. The vector caching option is selected
when programming the ICON register; software must explicitly store the vector entries in internal
RAM.

Since the internal RAM is mapped directly to the address space, this operation can be performed
using the core’s store instructions. Table 13-2 shows the required vector mapping to specific
locations in internal RAM. For example, the vector entry for vector number 18 must be stored at
RAM location 04H, and so on. 

The NMI vector is also shown in Table 13-2. This vector is always cached in internal data RAM at
location 0000H. The processor automatically loads this location at initialization with the value of
vector number 248 in the interrupt table.
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13.5.2.2 Caching Interrupt Routines and Reserving Register Frames

The time required to fetch the first instructions of an interrupt-handling procedure affects interrupt
response time and throughput. The controller allows this fetch time to be reduced by caching
interrupt procedures or portions of procedures in the i960 Jx microprocessor’s instruction cache.
See section 4.4, “INSTRUCTION CACHE” (pg. 4-4) for information on the instruction cache.

To decrease interrupt latency for high priority interrupts (priority 28 and above), software can limit
the number of frames in the local register cache available to code running at a lower priority
(priority 27 and below). This ensures that some number of free frames are available to high-priority
interrupt service routines. See section 4.2, “LOCAL REGISTER CACHE” (pg. 4-2), for more
details.

Table 13-2.  Location of Cached Vectors in Internal RAM

Vector Number (Binary) Vector Number (Decimal) Internal RAM Address

(NMI) 248 0000H

0001 00102 18 0004H

0010 00102 34 0008H

0011 00102 50 000CH

0100 00102 66 0010H

0101 00102 82 0014H

0110 00102 98 0018H

0111 00102 114 001CH

1000 00102 130 0020H

1001 00102 146 0024H

1010 00102 162 0028H

1011 00102 178 002CH

1100 00102 194 0030H

1101 00102 210 0034H

1110 00102 226 0038H

1111 00102 242 003CH
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13.5.2.3 Caching the Interrupt Stack

By locating the interrupt stack in memory that can be cached by the data cache, the performance of
interrupt returns can be improved. This is because potentially accesses to the interrupt record by
the interrupt return can be satisfied by the data cache. See section 12.6, “Programming the Logical
Memory Attributes” (pg. 12-8) for details on how to enable data caching for portions of memory.

13.5.3 Base Interrupt Latency

In many applications, the processor’s instruction mix and cache configuration are known suffi-
ciently well to use typical interrupt latency in calculations of overall system performance. For
example, a timer interrupt may frequently trigger a task switch in a multi-tasking kernel. Base
interrupt latency assumes the following:

• Single-cycle RISC instruction is interrupted.

• Frame flush does not occur.

• Bus queue is empty.

• Cached interrupt handler.

• No interaction of faults and interrupts (i.e., a stable system).

Table 13-3 shows the base latencies for all interrupt types, with varying pin sampling and vector
caching options. Note that the 80960JD interrupt latency is approximately 50% less than the
80960JA/JF interrupt latency due to its core clock operating at twice the speed of CLKIN.
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13.5.4 Maximum Interrupt Latency

In real-time applications, worst-case interrupt latency must be considered for critical handling of
external events. For example, an interrupt from a mechanical subsystem may need service to
calculate servo loop parameters to maintain directional control. Determining worst-case latency
depends on knowledge of the processor’s instruction mix and operating environment as well as the
interrupt controller configuration. Excluding certain very long, uninterruptable instructions from
critical sections of code will effectively reduce worst-case interrupt latency to levels approaching
the base latency.

Table 13-3.  Base Interrupt Latency

Interrupt Type
Detection 

Option

Vector 
Caching 
Enabled

Typical 80960JA/JF
Latency (Bus Clocks)

Typical 80960JD
Latency (Bus Clocks)

NMI
Fast Yes 29 149

Debounced Yes 32 15.5

Dedicated Mode 
XINT7:0, TINT1:0

Fast
Yes 34 17.5

No 40+a 21+b

Debounced
Yes 37 21.5

No 45+a 26+b

Expanded Mode 
XINT7:0, TINT1:0

Debounced
Yes 37 22

No 45+a 26+b

Software NA
Yes 68 35

No 69+a 36.5+b

Notes:
a = MAX (0,N - 7)
b = MAX (0,N - 3.5)

where “N” is the number of bus cycles needed to perform a word load.
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Tables 13-3 through 13-3 present worst case interrupt latencies based on possible execution of
divo (r15 destination), divo (r3 destination), calls or flushreg instructions or software interrupt
detection. The assumptions for these tables are the same as for Table 13-3, except for instruction
execution.

Table 13-4.  Worst-Case Interrupt Latency Controlled by divo to Destination r15

Interrupt Type
Detection 

Option

Vector 
Caching 
Enabled

Worst 80960JA/JF
Latency (Bus Clocks)

Worst 80960JD
Latency (Bus Clocks)

NMI
Fast Yes 42 23.5

Debounced Yes 46 26

Dedicated Mode 
XINT7:0, TINT1:0

Fast
Yes 45 23.5

No 45+a 23.5+b

Debounced
Yes 49 27.5

No 51+a 27.5+b

Expanded Mode 
XINT7:0, TINT1:0

Debounced
Yes 50 27.5

No 51+a 27.5+b

Notes:
a = MAX (0,N - 11)
b = MAX (0,N - 5)

where “N” is the number of bus cycles needed to perform a word load.
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Table 13-5.  Worst-Case Interrupt Latency Controlled by divo to Destination r3 

Interrupt Type
Detection 

Option

Vector 
Caching 
Enabled

Worst 80960JA/JF
Latency (Bus Clocks)

Worst 80960JD
Latency (Bus Clocks)

NMI
Fast Yes 59 30.5

Debounced Yes 64 34.5

Dedicated Mode 
XINT7:0, TINT1:0

Fast
Yes 65 33.5

No 72+a 37.5+b

Debounced
Yes 69 37

No 76+a 42+b

Expanded Mode 
XINT7:0, TINT1:0

Debounced
Yes 70 37.5

No 76+a 42+b

Notes:
a = MAX (0,N - 7)
b = MAX (0,N - 3.5)

where “N” is the number of bus cycles needed to perform a word load.

Table 13-6.  Worst-Case Interrupt Latency Controlled by calls  (Sheet 1 of 2)

Interrupt Type
Detection 

Option

Vector 
Caching 
Enabled

Worst 80960JA/JF
Latency (Bus Clocks)

Worst 80960JD
Latency (Bus Clocks)

NMI
Fast Yes 53+a 27+c

Debounced Yes 56+a 32+c

Dedicated Mode 
XINT7:0, TINT1:0

Fast
Yes 58+a 29.5+c

No 66+a+b 33.5+c+d

Debounced
Yes 62+a 33+c

No 69+a+b 38+b+c

Notes:
a = MAX (0,N - 4)
b = MAX (0,N - 7)
c= MAX (0,N - 2.5)
d= MAX (0,N - 3.5)

where “N” is the number of bus cycles needed to perform a word load.
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Expanded Mode 
XINT7:0, TINT1:0

Debounced
Yes 63+a 32.5+c

No 70+a+b 38+c+d

Table 13-7.  Worst-Case Interrupt Latency When Delivering a Software Interrupt

Interrupt Type
Detection 

Option

Vector 
Caching 
Enabled

Worst 80960JA/JF
Latency (Bus 

Clocks)

Worst 80960JD
Latency (Bus Clocks)

NMI
Fast Yes 96 47

Debounced Yes 97 47

Dedicated Mode 
XINT7:0, TINT1:0

Fast
Yes 99 48

No 107+a 53+b

Debounced
Yes 100 48

No 107+a 53+b

Expanded Mode 
XINT7:0, TINT1:0

Debounced
Yes 96 48

No 105+a 53+b

Notes:
a = MAX (0,N - 7)
b = MAX (0,N - 3.5)

where “N” is the number of bus cycles needed to perform a word load.

Table 13-6.  Worst-Case Interrupt Latency Controlled by calls  (Sheet 2 of 2)

Interrupt Type
Detection 

Option

Vector 
Caching 
Enabled

Worst 80960JA/JF
Latency (Bus Clocks)

Worst 80960JD
Latency (Bus Clocks)

Notes:
a = MAX (0,N - 4)
b = MAX (0,N - 7)
c= MAX (0,N - 2.5)
d= MAX (0,N - 3.5)

where “N” is the number of bus cycles needed to perform a word load.
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13.5.4.1 Avoiding Certain Destinations for MDU Operations

Typically, when delivering an interrupt, the processor attempts to push the first four local registers
(pfp, sp, rip, and R3) onto the local register cache as early as possible. Because of register-
interlock, this operation is stalled until previous instructions return their results to these registers.
In most cases, this is not a problem; however, in the case of instructions performed by the
Multiply/Divide Unit (divo, divi, ediv, modi, remo, and remi), the processor could be stalled for
many cycles waiting for the result and unable to proceed to the next step of interrupt delivery.

Interrupt latency can be improved by avoiding the first four local registers as the destination for a
Multiply/Divide Unit operation. (Registers pfp, sp, and rip should be avoided anyway for general
operations as these are used for procedure linking.)

Table 13-8.  Worst-Case Interrupt Latency Controlled by flushreg of One Stack Frame

Interrupt Type Detection Option
Vector 

Caching 
Enabled

Worst 80960JA/JF
Latency (Bus 

Clocks)

Worst 80960JD
Latency (Bus 

Clocks)

NMI
Fast Yes 77+a+b 41+d+e

Debounced Yes 81+a+b 43+d+e

Dedicated Mode 
XINT7:0, TINT1:0

Fast
Yes 82+a+b 43+d+e

No 89+a+b+c 47.5+d+e+f

Debounced
Yes 86+a+b 47+d+e

No 93+a+b+c 51+d+e+f

Expanded Mode 
XINT7:0, TINT1:0

Debounced
Yes 88+a+b 47.5+d+e

No 93+a+b+c 52+d+e+f

Notes:
a = MAX (0, M - 15)
b = MAX (0, M - 28)
c = MAX (0, N - 7)

d = MAX (0, M - 7.5)
e = MAX (0, M - 15)
f = MAX (0, n - 3.5)

where “M” is the number of bus cycles needed to perform a quad word store and “N” is the number of bus 
cycles needed to perform a word load. Interrupt latency increases rapidly as the number of flushed stack 
frames increases.
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13.5.4.2 Masking Integer Overflow Faults for syncf

The i960 core architecture requires an implicit syncf before delivering an interrupt so that a fault
handler can be dispatched first, if necessary. The syncf can require a number of cycles to
complete if a multi-cycle multiply or divide instruction was issued previously and integer-
overflow faults are unmasked (allowed to occur). Interrupt latency can be improved by masking
integer-overflow faults, which allows the implicit syncf to complete in much shorter time.
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CHAPTER 14
TIMERS

A key enhancement of the i960® Jx processor — not available on previous i960 processor family
members — are the two identical, fully independent 32-bit timers. Each is programmed by use of
the timer registers. These registers are memory-mapped within the processor, addressable on 32-bit
boundaries. The timers have a single shot mode and auto-reload capabilities for continuous
operation. Each timer has an independent interrupt request to the processor’s interrupt controller. A
timer can generate a fault when unauthorized writes from user mode are detected. Figure 14-1
shows a diagram of the timer functions. Figure 14-5 shows the Timer Unit state diagram

Figure 14-1.  Integrated Timer Functional Diagram
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14.1 TIMER REGISTERS

Each timer can contain a user-defined count value. When enabled, this count value decrements
with each Timer Clock (TCLOCK) cycle. The timers can be configured to either stop when the
user-defined count value reaches zero (“single-shot”) or run continuously (“auto-reload”). Each
timer is clocked internally to decrement at a rate equal to the Bus Clock frequency, Bus Clock /2,
Bus Clock /4, or Bus Clock /8. 

As shown in Table 14-1, each memory-mapped timer has three registers:

• Timer Reload register - contains the timer’s reload count; described in section 14.1.3, “Timer
Reload Register (TRR0, TRR1)” (pg. 14-7).

• Timer Count register - contains the timer’s current count; described in section 14.1.2, “Timer
Count Register (TCR0, TCR1)” (pg. 14-6).

• Timer Mode register - programs the specific mode of operation or indicates the current
programmed status of the timer. This register is described in section 14.1.1, “Timer Mode
Register (TMR0, TMR1)” (pg. 14-2).

14.1.1 Timer Mode Register (TMR0, TMR1)

The Timer Mode register (TMRx; see Figure 14-2) programs the specific mode of operation or
indicates the current programmed status for the specified timer. TMRx bits are described in the
subsections following Figure 14-2 and summarized in Table 14-2.

Table 14-1.  Timer Registers

Timer Register Acronym Register Name

Timer 0

TRR0 Timer Reload register 0

TCR0 Timer Count register 0

TMR0 Timer Mode register 0

Timer 1

TRR1 Timer Reload register 1

TCR1 Timer Count register 1

TMR1 Timer Mode register 1
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Figure 14-2.  Timer Mode Register (TMR0, TMR1)

14.1.1.1 Bit 0 - Terminal Count Status Bit (TMRx.tc)

When the auto-reload (bit 2) is not selected for a timer, the Terminal Count (TC) bit is set when the
Timer Count Register (TCR) reaches the zero count value. The TC bit gives the application the
ability to monitor timer status through software instead of through interrupts. The TC bit will
remain set until software accesses (reads or writes) the TMR. The access clears the TC bit. A value
specified for TMRx.tc is ignored in the case of a write.

When auto-reload is selected for a timer and the timer is enabled, the TC bit is unpredictable.
Software should avoid relying on the value of the TC bit when auto-reload is enabled. 

28 24 20

4 0

Terminal Count Status - TMRx.tc
    (0) No Terminal Count 
    (1) Terminal Count 

Timer Enable - TMRx.enable 
    (0) Disabled
    (1) Enabled

Timer Auto Reload Enable - TMRx.reload
    (0) Auto Reload Disabled
    (1) Auto Reload Enabled

Timer Register Supervisor Write Control - TMRx.sup
    (0) Supervisor and User Mode Write Enabled
    (1) Supervisor Mode Only Write Enabled

Timer Input Clock Selects - TMRx.csel1:0
    (00) 1:1 Timer Clock = Bus Clock
    (01) 2:1 Timer Clock = Bus Clock / 2
    (10) 4:1 Timer Clock = Bus Clock / 4

16 12 8

    (11) 8:1 Timer Clock = Bus Clock / 8 

Reserved
(Initialize to 0)

Timer Mode Register (TMR0, TMR1)

31
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14.1.1.2 Bit 1 - Timer Enable (TMRx.enable)

The Timer Enable bit allows user software to control the timer’s RUN/STOP status. When:

TMRx.enable = 1 The Timer Count register decrements every Timer Clock (TCLOCK) cycle.
TCLOCK is determined by the Timer Input Clock Select (TMRx.csel1:0
bits, refer to section 14.1.1.5). TMRx.enable is automatically cleared when
the count reaches zero if reload=0. If Reload=1, the bit remains set.

TMRx.enable = 0 The timer is disabled and all input transitions are ignored.

User software sets this bit. Once set, the timer continues to run, regardless of other processor
activity (for example, the timer runs while the processor is in Halt mode) until:

• User software explicitly clears this bit (TMRx.enable = 0).

• TCRx value reaches terminal count (= 0) and the Timer Auto Reload Enable (TMRx.reload)
bit = 0.

• Reset (hardware/software reset or powerup). Refer to section 11.2, “INITIALIZATION” (pg.
11-2)

14.1.1.3 Bit 2 - Timer Auto Reload Enable (TMRx.reload)

Bit 2 (TMRx.reload) determines whether the timer runs continuously or in single-shot mode.
When TCRx = 0 and TMRx.enable = 1 and:

TMRx.reload = 1 Allows the timer to run continuously. The processor: 

• Automatically loads TCRx with the value in the Timer Reload register 
(TRRx), when TCR.x value is zero.

• TCRx decrements until TCRx = 0 again. 

This process repeats until software clears bits 1 or 2. 

TMRx.reload = 0 Timer runs until the Timer Count Register = 0. TRRx has no effect on the
timer. 

This bit is set and cleared by user software. It is also cleared upon powerup (hardware reset) or
software reset. Refer to section 11.2, “INITIALIZATION” (pg. 11-2).

14.1.1.4 Bit 3 - Timer Register Supervisor Read/Write Control (TMRx.sup)

This bit determines whether user mode writes are permitted to the Timer registers (TMRx, TCRx,
TRRx). Supervisor mode writes are allowed regardless of this bit’s condition. These registers can
be read from either mode. 
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When:

TMRx.sup = 1 A TYPE.MISMATCH fault is generated when a user mode task attempts a
write to any of the timer registers; however, supervisor mode writes are
allowed.

TMRx.sup = 0 The timer registers can be written from either supervisor mode or user
mode. 

This bit has no effect on reading the timer registers from user or supervisor mode. This bit can
always be written in supervisor mode.

When the processor is in supervisor mode, user software can set or clear this bit. It is also cleared
upon power-up (hardware reset) or software reset. Refer to section 11.2, “INITIALIZATION” (pg.
11-2). 

14.1.1.5 Bits 4, 5 - Timer Input Clock Selects (TMRx.csel1:0)

Software programs these bits to select the Timer Clock (TCLOCK; see Table 14.3). As shown in
Figure 14-1, the bus clock is an input to the Timer Clock Unit. These bits allow the application to
specify whether TCLOCK runs at or slower than the Bus Clock frequency. 

These bits are only set by software. Upon powerup (hardware reset) or software reset, these bits are
cleared (TCLOCK = Bus Clock). 

Table 14-2.  Timer Mode Register Control Bit Summary
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Action

X X X X 0 Timer disabled.

X X N 0 1 Timer enabled, TMRx.enable will be cleared when TCRx decrements to zero.

X N N 1 1
Timer and auto reload enabled,TMRx.enable remains set when TCRx=0. 
When TCRx=0, TCRx equals the TRRx value.

0 X X X X No faults for user mode writes will be generated.

1 X X X X TYPE.MISMATCH fault generated on user mode write.

Notes: X = don’t care

N = a number between 1H and FFFF FFFFH
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14.1.2 Timer Count Register (TCR0, TCR1)

The timer count register (‘TCR) is a 32-bit register which contains the timer’s current count. This
register can be read or written when the timer is running or stopped. The register value will be
decremented for each timer clock tick. When this register value is decremented to a zero value
(terminal count), a timer interrupt will be generated; if auto-reload is not selected for the timer, the
TC status bit in the timer mode register (TMR, Bit 0) will be set and remain set until the TMRx
register is accessed. Figure 14-3 shows the timer count register.

Figure 14-3.  Timer Count Register (TCR0, TCR1)

The maximum programmable value is FFFF FFFFH; the minimum value is 1H. Programming a
value of 0 should be avoided and will have different results. See section 14.5, “Uncommon TCRx
and TRRx Conditions” (pg. 14-11) for more information.

User software can access (read or write) the TCRx whether the timer is running or stopped. Bit 3
of the TMRx register determines read/write control (see section 14.1.1.4 for read/write control).
TCRx register value is undefined after powerup or reset.

Table 14.3.  Timer Input Clock (TCLOCK) Frequency Selection

Bit 5
TMRx.csel1

Bit 4
TMRx.csel0

Timer Clock (TCLOCK)

0 0 Timer Clock = Bus Clock

0 1 Timer Clock = Bus Clock / 2

1 0 Timer Clock = Bus Clock / 4

1 1 Timer Clock = Bus Clock / 8

28 24 20 4 016 12 8

Timer Count Register (TCR0, TCR1)

Timer Count Value - TCRx.d31:0
    D31:0
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14.1.3 Timer Reload Register (TRR0, TRR1)

The Timer Reload register (TRRx; Figure 14-4) is a 32-bit register that the user programs to
contain the timer’s reload count. The reload count value is only loaded into TCRx when
TMRx.reload is set (1), TMRx.enable is set (1) and TCRx equals zero.

The maximum programmable value of the Timer Reload register is FFFF FFFFH, and the
minimum value is 1H. Programming a value of 0 should be avoided, as it may cause TINTx to not
be asserted continuously. See section 14.5, “Uncommon TCRx and TRRx Conditions” (pg. 14-11)
for more information on results of setting TRRx to zero.

User software can accesses the TRRx whether the timer is running or stopped. Bit 3 of the TMRx
register determines read/write control (see section 14.1.1.4 for read/write control). TRRx register
value is undefined after powerup or reset.

Figure 14-4.  Timer Reload Register (TRR0, TRR1)

14.1.4 Timer Responses to Bit Settings

Table 14-4 summarizes the timer access timing and maximum times for the timer to respond when
registers are accessed. Refer also to the individual register descriptions for details.

14.2 TIMER FUNCTIONS

The following sections describe enabling and disabling the Timer Counters and the associated
latency.

Timer Reload Register (TRR0, TRR1)

28 24 20 4 016 12 8

Timer Auto-Reload Value - TRRx.d31:0
    D31:0
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Table 14-4.  Timer Responses to Register Bit Settings 

 Name Status Action

(TMRx.tc)

Terminal Count
Bit 0

READ
Bit is cleared when user software accesses TMRx. It can be set 1 bus clock 
later. The timer sets this bit within 1 bus clock of TCRx reaching zero if 
TMR.reload=0. 

WRITE Bit is cleared within 1 bus clock after the software accesses TMRx. 

(TMRx.enable)

Timer Enable
Bit 1

READ Bit is available 1 bus clock after executing a read instruction from TMRx.

WRITE
Writing a ‘1’ enables the bus clock to decrement TCRx within 1 bus clock after 
executing a store instruction to TMRx.

(TMRx.reload)

Timer Auto 
Reload Enable 

Bit 2

READ Bit is available 1 bus clock after executing a read instruction from TMRx.

WRITE
Writing a ‘1’ enables the reload capability within 1 bus clock after the store 
instruction to TMRx has executed. This allows TRRx data to be loaded into 
TCRx and decremented on the next bus clock cycle. 

(TMRx.sup)

Timer Register 
Supervisor 

Write Control
Bit 3

READ Bit is available 1 bus clock after executing a read instruction from TMRx.

WRITE
Writing a ‘1’ locks out user mode writes within 1 bus clock after the store 
instruction executes to TMRx. The timer prevents user mode writes. Upon 
detecting a user mode write the timer generates a fault condition. 

(TMRx.csel1:0)

Timer Input 
Clock Select

Bits 4-5

READ
Bits are available 1 bus clock after executing a read instruction from 
TMRx.csel1:0 bit(s).

WRITE
The timer re-synchronizes the clock cycle used to decrement TCRx within one 
bus clock cycle after executing a store instruction to TMRx.csel1:0 bit(s).

TCRx.d31:0

Timer Count 
Register

READ
The current TCRx count value is available within 1 bus clock cycle after 
executing a read instruction from TCRx. If the count is to be decremented, the 
pre-decremented value is returned as the current count value.

WRITE
The value written to TCRx becomes the active TCRx value to be decremented 
within 1 bus clock cycle. If TCRx is decremented, the value written becomes 
the active TCRx value to be decremented in the current clock cycle.

TRRx.d31:0

Timer Reload 
Register

READ

The current TRRx count value is available within 1 bus clock after executing a 
read instruction from TRRx. If the TRRx count is being transferred into TCRx in 
the current count cycle, the new TCRx count value will be returned to the 
executing read instruction.

WRITE
The value written to TRRx becomes the active value stored in TRRx within 1 
bus clock cycle. If the TRRx value is being transferred into the TCRx, data 
written to TRRx is also transferred into TCRx).
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14.2.1 Enabling/Disabling Counters

Each timer has an Enable bit in its Control register (TMRx.enable) to allow or prevent the timer
from counting. The supervisor (SUP) bit controls write accesses to the Enable bit. User software
can set or clear the Enable bit. If the timer is not programmed for continuous operation (Auto
Reload), the Enable bit automatically clears at the end of a counting sequence.

As with all other load accesses from internal memory-mapped registers, a load instruction that
accesses a timer register has a latency of one internal processor cycle. With one exception, a store
access to a timer register is synchronous with respect to the next instruction; that is, the operation
completes fully and all state changes take effect before the next instruction begins execution. The
exception to this is when disabling a timer. Latency associated with the disabling action is such that
a timer interrupt may be posted immediately after the store to TMRx to disable it completes. This
is because the timer is potentially near zero as the storing of the TMRx MMR occurs. In this case,
the timer interrupt is guaranteed to be posted immediately after the store to the TMRx MMR
completes and before the next instruction can execute.

Note that the processor may delay the actual issuing of the load or store operation due to previous
instruction activity and resource availability of processor functional units. 

Lastly, the processor ensures that the TC bit will be cleared within 1 bus clock after a load or store
instruction accesses the TMR register. 

14.2.2 Programming Considerations

Since timer registers can be read or written whether the timer is operating or not, and processor
accesses to timer registers are synchronized with counter element accesses, the processor cannot
read a partially modified register.

14.3 TIMER INTERRUPTS

Each timer is the source for one interrupt. When a timer detects a zero count in its TCR, the timer
will force the generation of an internal edge-detected Timer Interrupt signal (TINTx) to the
interrupt controller, and the interrupt-pending (IPND.tipx) will be set in the interrupt controller.
Each timer interrupt can be selectively masked in the Interrupt Mask (IMSK) register or handled as
a dedicated hardware-requested interrupt. Refer to CHAPTER 13, INTERRUPT CONTROLLER
for a description of hardware-requested interrupts.

If the interrupt is disabled after a request has been generated, but before a pending interrupt is
serviced, the interrupt request is still active (the Interrupt Controller latches the request). If a timer
generates a second interrupt request before the CPU services the first interrupt request, the second
request may be lost.
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When auto-reload is enabled for a timer, the timer will continue to decrement the contents in the
TCR even after entry into the timer interrupt handler.

An interrupt is generated when:

• the Timer Count Register reaches 0 and

• the auto reload is not selected (TMRx.reload=0). See section 14.1.1.1, “Bit 0 - Terminal
Count Status Bit (TMRx.tc)” (pg. 14-3)

14.4 POWERUP/RESET INITIALIZATION

Upon power up, external hardware reset or software reset (sysctl), the Timer Mode register is
initialized to the value shown in Table 14-5.

Table 14-5.  Timer Powerup Mode Settings 

Mode/Control Bit Notes

TMRx.tc = 0 Read only

TMRx.enable = 0 Prevents counting and assertion of TINTx

TMRx.reload = 0 Single terminal count mode

TMRx.sup = 0 Supervisor or User Mode access

TMRx.csel1:0 = 0 Timer Clock = Bus Clock

TCRx.d31:0 = 0 undefined

TRRx.d31:0 = 0 undefined

TINTx output deasserted
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14.5 UNCOMMON TCRX AND TRRX CONDITIONS 

Under certain conditions it may be useful to set the Timer Count register or the Timer Reload
counter to zero before enabling the timer counter unit. Table 14-6 details the conditions and results
when these conditions are set.

14.6 TIMER STATE DIAGRAM

The Figure 14-5 shows the common states of the Timer Unit. For uncommon conditions see
section section 14.5, “Uncommon TCRx and TRRx Conditions” (pg. 14-11)

Table 14-6.  Uncommon TMRx Control Bit Settings
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Action

X 0 0 1 TMRx.tc and TINTx will be set, TMR.enable will be cleared

0 0 1 1
Timer and auto reload enabled, TINTx will not be generated and timer enable 
remains set.

0 N 1 1
Timer and auto reload enabled. TINT.x will be set when TCRx=0. The timer will 
stay enabled but further TINTx’s will not be generated.

N 0 1 1
Timer and auto reload enabled, TINTx will not be set initially, TCRx = TRRx, 
TINTx will be set when TCRx has completely decremented the value it loaded 
from TRRx. TMRx.enable remains set.

NOTE: X = don’t care

N = a number between 1H and FFFF FFFFH
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Figure 14-5.  Timer Unit State Diagram

Hardware/Software Reset 

TMR.enable = 0
TMR.reload = 0
TMR.sup = 0
TMR.csel1:0 = 0

IDLE State
Bus Clock or
SW Read

SW Write (TMR.enable = 1)

TMR.enable = 1
TMR.reload =user value
TMR.sup = user value
TMR.csel1:0 = user value

TCR
Decrement

Clock Unit Tick

SW Write TCR = 0

 and TCR != 0

TC = 1
IPND.tip = 1

IPND.tip = 0

TC Detected

Bus Clock

SW Read & Reload = 0

SW Write & Reload = 0 Reload = 1

TCR = TRR

TMR.enable = 1

TC = 0

TMR.enable = 0

State

TC = 0

TMR.reload =user value
TMR.sup = user value
TMR.csel1:0 = user value

TMR.enable = 1

TMR.enable = 0

TMR.enable = 0

SW Write
(TMR.enable = 0)

Ovals denote a state
Boxes denote actions

Note: 

Init TCR
check

TCR != 0

SW Read
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CHAPTER 15
EXTERNAL BUS

This chapter describes the bus interface of the i960®  Jx processor. It explains the following:

• Bus states and their relationship to each other

• Bus signals, which consist of address/data, control/status 

• Read, write, burst and atomic bus transactions

• Related bus functions such as arbitration

This chapter also serves as a starting point for the hardware designer when interfacing typical
memory and peripheral devices to the i960 Jx processor’s address/data bus.

For information on programmable bus configuration, refer to CHAPTER 12, MEMORY CONFIG-
URATION.

15.1 OVERVIEW

The bus is the data communication path between the various components of an i960 Jx micropro-
cessor hardware system, allowing the processor to fetch instructions, manipulate data and interact
with its I/O environment. To perform these tasks at high bandwidth, the processor features a burst
transfer capability, allowing up to four successive 32-bit data transfers at a maximum rate of one
word every clock cycle.

The address/data path is multiplexed for economy and bus width is programmable to 8-, 16- and
32-bit widths. The processor has dedicated control signals for external address latches, buffers and
data transceivers. In addition, the processor uses other signals to communicate with alternate bus
masters. All bus transactions are synchronized with the processor’s clock input (CLKIN);
therefore, the memory system control logic can be implemented as state machines.

15.2 BUS OPERATION

Knowing definitions of the terms request, access and transfer is essential to understand descrip-
tions of bus operations.
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The processor’s bus control unit is designed to decouple bus activity from instruction execution in
the core as much as possible. When a load or store instruction or instruction prefetch is issued, a
bus request is generated in the bus control unit. The bus control unit independently processes the
request and retrieves data from memory for load instructions and instruction prefetches. The bus
control unit delivers data to memory for store instructions.

The i960 architecture defines byte, short word, word, double word, triple word and quad word data
lengths for load and store instructions. When a load or store instruction is encountered, the
processor issues a bus request of the appropriate data length: for example, ldq requests that four
words of data be retrieved from memory; stob requests that a single byte be delivered to memory.
The processor always fetches instructions using double or quad word bus requests. 

A bus access is defined as a bus transaction bounded by the assertion of ADS (address/data status)
and de-assertion of BLAST (burst last) signals, which are outputs from the processor. A bus access
consists of one to four data transfers. During each transfer, the processor either reads data or
drives data on the bus. The number of transfers per access and the number of accesses per request
is governed by the requested data length, the programmed width of the bus and the alignment of
the address. 

15.2.1 Basic Bus States

The bus has five basic bus states: idle (Ti), address (Ta), wait/data (Tw/Td), recovery (Tr), and
hold (Th). During system operation, the processor continuously enters and exits different bus
states.

The bus occupies the idle (Ti) state when no address/data transactions are in progress and when
RESET is asserted.   When the processor needs to initiate a bus access, it enters the Ta state to
transmit the address.

Following a Ta state, the bus enters the Tw/Td state to transmit or receive data on the address/data
lines. Assertion of the RDYRCV input signal indicates completion of each transfer. When data is
not ready, the processor can wait as long as necessary for the memory or I/O device to respond. 

After the data transfer, the bus exits the Tw/Td state and enters the recovery (Tr) state. In the case
of a burst transaction, the bus exits the Td state and re-enters the Td/Tw state to transfer the next
data word. The processor asserts the BLAST signal during the last Tw/Td states of an access. Once
all data words transfer in a burst access (up to four), the bus enters the Tr state to allow devices on
the bus to recover.

The processor remains in the Tr state until RDYRCV is deasserted. When the recovery state
completes, the bus enters the Ti state if no new accesses are required. If an access is pending, the
bus enters the Ta state to transmit the new address.
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Figure 15.1.  Bus States with Arbitration

Ti — IDLE STATE
Ta — ADDRESS STATE
Tw / Td — WAIT/DATA STATE
Tr — RECOVERY STATE
Th — HOLD STATE
To — ONCE STATE

READY— RDYRCV ASSERTED
NOT READY— RDYRCV NOT ASSERTED

BURST— BLAST NOT ASSERTED
NO BURST— BLAST ASSERTED

RECOVERED— RDYRCV NOT ASSERTED
NOT RECOVERED— RDYRCV ASSERTED

REQUEST PENDING— NEW TRANSACTION
NO REQUEST— NO NEW TRANSACTION

HOLD— HOLD REQUEST ASSERTED
NO HOLD— HOLD REQUEST NOT ASSERTED
LOCKED — ATOMIC EXECUTION (ATADD, ATMOD) IN 

PROGRESS
NOT LOCKED— NO ATOMIC EXECUTION IN PROGRESS

                            RESET-- RESET ASSERTED
             ONCE-- ONCE ASSERTED

Tw/Td

Tr

Th

Ti

Ta

(READY AND BURST) 
OR NOT READY

NOT 
RECOVERED

READY AND
 NO BURST 

HOLD AND 
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HOLD AND NOT 
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NO REQUEST  
AND (NO HOLD 
OR LOCKED)

REQUEST 
PENDING 

AND NO HOLD

REQUEST PENDING 
AND (NO HOLD OR 

LOCKED)

RECOVERED AND 
NO REQUEST AND 

(NO HOLD OR 
LOCKED)

RECOVERED 
AND REQUEST 
PENDING AND 
(NO HOLD OR 

LOCKED)

NO REQUEST 
AND NO HOLD

To RESET

ONCE & RESET 
DEASSERTION
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15.2.2 Bus Signal Types

Bus signals consist of three groups: address/data, control/status and bus arbitration. They are listed
in Table 15.1. A detailed description of all signals can be found in the 80960JA/JF Embedded 32-
bit Microprocessor Data Sheet and the 80960JD Embedded 32-bit Microprocessor Data Sheet.

15.2.2.1 Clock Signal

The CLKIN input signal is the reference for all i960 Jx microprocessor signal timing relationships.
Note that this is true even for the i960 JD processor, even though the CPU core runs at twice the
CLKIN rate. Transitions on the AD31:2, AD1:0, A3:2, ADS, BE3:0, WIDTH/HLTD1:0, D/C,
W/R, DEN, BLAST, RDYRCV, LOCK/ONCE, HOLD/HOLDA and BSTAT bus signal pins are
always measured directly from the rising edge of CLKIN. The processor asserts ALE and ALE
directly from the rising CLKIN edge at the beginning of a Ta state but deasserts them approxi-
mately half way through the state instead of the next rising CLKIN edge. All transitions on DT/R
are also referenced to a point halfway through the Ta state instead of rising CLKIN edges.

15.2.2.2 Address/Data Signal Definitions

The address/data signal group consists of 34 lines. 32 of these signals multiplex within the
processor to serve a dual purpose. During Ta, the processor drives AD31:2 with the address of the
bus access. At all other times, these lines are defined to contain data. A3:2 are demultiplexed
address pins providing incrementing word addresses during burst cycles. AD1:0 denote burst size
during Ta and data during other states. 

The processor routinely performs data transfers less than 32 bits wide. If the programmed bus
width is 32 bits and transfers are 16- or 8-bit, then during write cycles the processor will replicate
the data that is being driven on the unused address/data pins. If the programmed bus width is 16 or
8 bits, then during write cycles the processor will continue driving address on any unused
address/data pins. 

Whenever the programmed bus width is less than 32 bits, additional demultiplexed address bits are
available on unused byte enable pins (See section 15.2.3.1, “Bus Width” (pg. 15-7)). These signals
increment during burst accesses in similar fashion to the A3:2 pins.

15.2.2.3 Control/Status Signal Definitions

The control/status signal group consists of 15 signals. These signals control data buffers and
address latches or furnish information useful to external chip-select generation logic. All output
control/status signals are three-state.
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Table 15-1.  Summary of i960 Jx Processor Bus Signals

Signal 
Symbol

Name (Direction) Signal Function

AD31:2 Address/Data 31:2 (I/O)
Word address, driven during Ta. Read or write data, 
driven or sampled during Tw/Td.

AD1:0 Address/Data 1:0 and Size 1:0 (I/O)
Number of transfers, driven during Ta. Read or write 
data, driven or sampled during Tw/Td.

A3:2 Address 3:2 (O)
Incrementing burst address bits, driven during Ta 
and Tw/Td.

ALE Address Latch Enable (O) Driven during Ta for demultiplexing AD bus.

ALE Address Latch Enable (Inverted) (O) Driven during Ta for demultiplexing AD bus.

ADS Address/Data Status (O) Valid address indicator, driven during Ta.

BE3:0
Byte Enables 3:0 and Byte High 

Enable/Byte Low Enable and A1:0 (O)

Enable selected data bytes on bus. (16-bit bus) BE3 
and BE0 enable high and low bytes. (8-bit bus) 
BE1:0 are incrementing burst address bits. Driven 
during Ta and Tw/Td.

WIDTH/HLTD
1:0

Width and Processor Halted (O)
Physical bus size, driven during Ta and Tw/Td. Can 
denote Halt Mode.

D/C Data/Code (O)
Data access or instruction access, driven during Ta 
and Tw/Td.

W/R Write/Read (O)
Indication of data direction, driven during Ta and 
Tw/Td.

DT/R Data Transmit/Receive (O)
Delayed indication of data direction, driven during Ta 
and Tw/Td.

DEN Data Enable (O) Enables data on bus, driven during Tw/Td.

BLAST Burst Last (O) Last transfer of a bus access, driven during Tw/Td.

RDYRCV Ready/Recover (I)
Data transfer edge when sampled low during Tw/Td. 
Bus recovered when sampled high during Tr.

LOCK/ONCE Lock/On-Circuit Emulation (I/O)
Atomic operation, driven during Ta and Tw/Td. 
ONCE floats all pins when sampled at reset.

HOLD Hold (I)
Acquisition request from external bus master, 
sampled any clock.

HOLDA Hold Acknowledge (O)
Bus control granted to external bus master, driven 
during Th.

BSTAT Bus Status (O)
Processor may stall unless it can acquire bus, driven 
any clock.
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Bus accesses begin with the assertion of ADS (address/data status) during a Ta state. External
decoding logic typically uses ADS to qualify a valid address at the rising clock edge at the end of
Ta. The processor pulses ALE (address latch enable) active high for one half clock during Ta to
latch the multiplexed address on AD31:2 in external address latches. An inverted signal, ALE, is
also present for compatibility with i960 Kx processor-based companion devices.

The byte enable (BE3:0) signals denote which bytes on the 32-bit data bus will transfer data
during an access. The processor asserts byte enables during Ta and deasserts them during Tr.
When the data bus is configured for 16 bits, two byte enables become byte high enable and byte
low enable and an additional address bit A1 is provided. When the bus is configured for 8 bits,
there are no byte enables, but additional address bits A1:0 are provided. Note that the processor
always drives byte enable pins to logical 1’s during the Tr state, even when they are used as
addresses.

The WIDTH1:0, D/C and W/R signals yield useful bus access information for external memory
and I/O controllers. The WIDTH1:0 signals denote programmed physical memory attributes. The
data/code pin indicates whether an access is a data transaction (1) or an instruction transaction (0).
The write/read pin indicates the direction of data flow relative to the i960 Jx processor.
WIDTH1:0, D/C and W/R change state as needed during the Ta state.

DT/R and DEN pins are used to control data transceivers. Data transceivers may be used in a
system to isolate a memory subsystem or control loading on data lines. DT/R (data
transmit/receive) is used to control transceiver direction. In the second half of the Ta state, it
transitions high for write cycles or low for read cycles. DEN (data enable) is used to enable the
transceivers. DEN is asserted during the first Tw/Td state of a bus access and deasserted during Tr.
DT/R and DEN timings ensure that DT/R does not change state when DEN is asserted.

A bus access may be either non-burst or burst. A non-burst access ends after one data transfer to a
single location. A burst access involves two to four data cycles to consecutive memory locations.
The processor asserts BLAST (burst last) to indicate the last data cycle of an access in both burst
and non-burst situations.

All i960 Jx processor wait states are controlled by the RDYRCV (ready/recover) input signal. 

15.2.3 Bus Accesses

The i960 Jx microprocessor uses the bus signals to transfer data between the processor and another
component. The maximum transfer rate is achieved when performing burst accesses at the rate of
four 32-bit data words per six clocks.
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15.2.3.1 Bus Width

Each region’s data bus width is programmed in a Physical Memory Region Configuration
(PMCON) register. The processor allows an 8-, 16- or 32-bit data bus width for each region. The
processor places 8- and 16-bit data on low-order data pins, simplifying the interface to narrow bus
external devices. As shown in Figure 15-2, 8-bit data is placed on lines AD7:0; 16-bit data is
placed on lines AD15:0; 32-bit data is placed on lines AD31:0. The processor encodes bus width
on the WIDTH1:0 pins so that external logic may enable the bus correctly.

Figure 15-2.  Data Width and Byte Encodings

Depending on the programmed bus width, the byte enable signals provide either data enables or
low-order address lines:

• 8-bit region: BE0:1 provide the byte address (A0, A1) (see Table 15-2).

• 16-bit region: BE1 provides the short-word address (A1); BE3 is the byte high enable signal
(BHE); BE0 is the byte low enable signal (BLE) (see Table 15-3). 

• 32-bit region: byte enables are not encoded as address pins. Byte enables BE3:0 select bytes 0
through 3 of the 32-bit words addressed by AD31:2 (see Table 15-4).

When the byte enables function as address lines, they increment with each transfer during burst
accesses. Otherwise, byte enables never toggle between transfers of a burst, due to microcode
breakup of unaligned requests.
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During initialization, the bus configuration data is read from the Initialization Boot Record (IBR)
assuming an 8-bit bus width; however, the IBR can be in 8-bit, 16-bit, or 32-bit physical memory.
BE3 and BE2 are defined as “1” so that reading the bus configuration data works for all bus
widths. Since these byte enables are ignored for actual 8-bit memory, they can be permanently
defined this way for ease of implementation.

Table 15-2.  8-Bit Bus Width Byte Enable Encodings

Byte
BE3

(Not Used)
BE2

(Not Used)
BE1

(Used as A1)
BE0

(Used as A0)

0 1 1 0 0

1 1 1 0 1

2 1 1 1 0

3 1 1 1 1

Table 15-3.  16-Bit Bus Width Byte Enable Encodings

Byte
BE3

(Used as BHE)
BE2

(Not Used)
BE1

(Used as A1)
BE0

(Used as BLE)

0,1 0 1 0 0

2,3 0 1 1 0

0 1 1 0 0

1 0 1 0 1

2 1 1 1 0

3 0 1 1 1

Table 15-4.  32-Bit Bus Width Byte Enable Encodings

Byte BE3 BE2 BE1 BE0

0,1,2,3 0 0 0 0

0,1 1 1 0 0

2,3 0 0 1 1

0 1 1 1 0

1 1 1 0 1

2 1 0 1 1

3 0 1 1 1
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Intel designed the i960 Jx processor to drive determinate values on all address/data pins during
Tw/Td write operation states. For an 8-bit bus, the processor continues to drive address on unused
data pins AD31:8. For a 16-bit bus, the processor continues to drive address on unused data pins
AD31:16. However, when the processor does not use the entire bus width because of data width or
misalignment (i.e., 8-bit write on a 16- or 32-bit bus or a 16-bit write on a 32-bit bus), data is
replicated on those unused portions of the bus.

15.2.3.2 Basic Bus Accesses

The basic transaction is a read or write of one data word. The first half of Figure 15-3 shows a
typical timing diagram for a non-burst, 32-bit read transaction. For simplicity, no wait states are
shown.

During the Ta state, the i960 Jx microprocessor transmits the address on the address/data lines. In
the figure, the SIZE bits (AD1:0) specify a single word transaction and WIDTH1:0 indicate a 32-
bit wide access. The processor asserts ALE to latch the address and drives ADS low to denote the
start of the cycle. BE3:0 specify which bytes the processor uses to read the data word. The
processor brings W/R low to denote a read operation and drives D/C to the proper state. For data
transceivers, DT/R goes low to define the input direction. 

During the Tw/Td state, the i960 Jx microprocessor deasserts ADS and asserts DEN to enable any
data transceivers. Since this is a non-burst transaction, the processor asserts BLAST to signify the
last transfer of a transaction. The figure shows RDYRCV assertion by external logic, so this state
is a data state and the processor latches data on a rising CLKIN edge.

The Tr state follows the Tw/Td state. This allows the system components adequate time to remove
their outputs from the bus before the processor drives the next address on the address/data lines.
During the Tr state, BLAST, BE3:0 and DEN are inactive. W/R and DT/R hold their previous
values. The figure indicates a logical high for the RDYRCV pin, so there is only one recovery
state.

After a read, notice that the address/data bus goes to an invalid state during Ti. The processor
drives valid logic levels on the address/data bus instead of allowing it to float. See section 15.2.4,
“Bus and Control Signals During Recovery and Idle States” (pg. 15-22) for the values that are
driven during Ti.
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Figure 15-3.  Non-Burst Read and Write Transactions Without Wait States, 32-Bit Bus
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Figure 15-3 also shows a typical timing diagram for a non-burst, 32-bit write transaction. For the
write operation, W/R and DT/R are high to denote the direction of the data flow. The D/C pin is
high since instruction code cannot be written. During the Tw/Td state, the processor drives data on
the bus, waiting to sample RDYRCV low to terminate the transfer. The figure shows RDYRCV
assertion by external logic, so this state is a data state and the processor enters the recovery state.

At the end of a write, notice that the write data is driven during Tr and any subsequent Ti states.
After a write, the processor will drive write data until the next Ta state. See section 15.2.4, “Bus
and Control Signals During Recovery and Idle States” (pg. 15-22) for details.

15.2.3.3 Burst Transactions

A burst access is an address cycle followed by two to four data transfers. The i960 Jx micropro-
cessor uses burst transactions for instruction fetching and accessing system data structures.
Therefore, a system design incorporating an i960 Jx microprocessor must support burst transac-
tions. Burst accesses can also result from instruction references to data types which exceed the
width of the bus.

Maximum burst size is four data transfers, independent of bus width. A byte-wide bus has a
maximum burst size of four bytes; a word-wide bus has a maximum of four words. For an 8- or 16-
bit bus, this means that some bus requests may result in multiple burst accesses. For example, if a
quad word load request (e.g., ldq instruction) is made to an 8-bit data region, it results in four, 4-
byte, burst accesses. (See Table 15-6.)

 Burst accesses on a 32-bit bus are always aligned to even-word boundaries. Quad-word and triple-
word accesses always begin on quad-word boundaries (A3:2=00); double-word transfers always
begin on double-word boundaries (A2=0); single-word transfers occur on single word boundaries.
Figure 15-4 shows burst, stop and start addresses for a 32-bit bus.
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Figure 15-4.  32-Bit Wide Data Bus Bursts

Figure 15-5.  16-Bit Wide Data Bus Bursts
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Figure 15-6.  8-Bit Wide Data Bus Bursts

Burst accesses for a 16-bit bus are always aligned to even short-word boundaries. A four short-
word burst access always begins on a four short-word boundary (A2=0, A1=0). Two short-word
burst accesses always begin on an even short-word boundary (A1=0). Single short-word transfers
occur on single short-word boundaries (see Figure 15-5). 

Burst accesses for an 8-bit bus are always aligned to even byte boundaries. Four-byte burst
accesses always begin on a 4-byte boundary (A1=0, A0=0). Two-byte burst accesses always begin
on an even byte boundary (A0=0) (see Figure 15-6).

Figure 15-7 illustrates a series of bus accesses resulting from a triple-word store request to 16-bit
wide memory. The top half of the figure shows the initial location of 12 data bytes contained in
registers g4 through g6. The instruction’s task is to move this data to memory at address 0AH. The
top half of the figure also shows the final destination of the data.

Notice that a new 16-byte boundary begins at address 10H. Since the processor stores 6 of the 12
bytes after this 16-byte boundary, the processor will split the transaction into a number of accesses.
The i960 Jx processor cannot burst across 16-byte boundaries.
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The processor splits the transaction into the following accesses. It performs the following bus
cycles:

1. Non-burst access to transfer the first short word (contents 5678H) to
address 0AH. The short word at address 08H remains unchanged.

2. Burst access to transfer the second and third short words (contents 1234H
and 0FACEH) to address 0CH.

3. Burst access to transfer the fourth and fifth short words (contents
0FEEDH and 0BA98H) to address 10H.

4. Non-burst access to transfer the last short word (contents 0FEDCH) to
address 14H. The short word at address 16H remains unchanged.

Figure 15-7.  Unaligned Write Transaction
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Figure 15-8.  Burst Read and Write Transactions w/o Wait States, 32-bit Bus
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Figure 15-9.  Burst Read and Write Transactions w/o Wait States, 8-bit Bus
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15.2.3.4 Wait States

Wait states lengthen the microprocessor’s bus cycles, allowing data transfers with slow memory
and I/O devices. The 80960Jx supports three types of wait states: address-to-data, data-to-data
and turnaround or recovery. All three types are controlled through the processor’s RDYRCV
(Ready/Recover) pin, a synchronous input.

The processor’s bus states follow the state diagram in Figure 15.1. After the Ta state, the processor
enters the Tw/Td state to perform a data transfer. If the memory (or I/O) system is fast enough to
allow the transfer to complete during this clock (i.e., “ready”), external logic asserts RDYRCV.
The processor samples RDYRCV low on the next rising clock edge, completing the transfer; the
state is a data state. If the memory system is too slow to complete the transfer during this clock,
external logic drives RDYRCV high and the state is an address-to-data wait state. Additional wait
states may be inserted in similar fashion.

If the bus transaction is a burst, the processor re-enters the Tw/Td state after the first data transfer.
The processor continues to sample RDYRCV on each rising clock edge, adding a data-to-data wait
state when RDYRCV is high and completing a transfer when RDYRCV is low. The process
continues until all transfers are finished, with RDYRCV assertion denoting every data acquisition.

Figure 15-10 illustrates a quad word burst write transaction with wait states. There are two
address-to-data wait states single data-to-data wait states between transfers.
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Figure 15-10.  Burst Write Transactions With 2,1,1,1 Wait States, 32-bit Bus
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15.2.3.5 Recovery States

The state following the last data transfer of an access is a recovery (Tr) state. By default, i960 Jx
microprocessor bus transactions have one recovery state. External logic can cause additional
recovery states to be inserted by driving the RDYRCV pin low at the end of Tr. 

Recovery wait states are an important feature for the Jx because it employs a multiplexed bus.
Slow memory and I/O devices often need a long time to turn off their output drivers on read
accesses before the microprocessor drives the address for the next bus access. Recovery wait states
are also useful to force a delay between back-to-back accesses to I/O devices with their own
specific access recovery requirements.

System ready logic is often described as normally-ready or normally-not-ready. Normally-ready
logic asserts a microprocessor’s input pin during all bus states, except when wait states are desired.
Normally-not-ready logic deasserts a processor’s input pin during all bus states, except when the
processor is ready. The subtle nomenclature distinction is important for i960 Jx microprocessor
systems because the active sense of the RDYRCV pin reverses for recovery states. During the Tr
state, logic 0 means “continue to recover” or “not ready”; for Tw/Td states, logic 0 means “ready”.
Logic must assure “ready” and “not recover” are generated to terminate an access properly. Be
certain to not hang the processor with endless recovery states. Conventional ready logic
implemented as normally-not-ready will operate correctly (but without adding turnaround wait
states).

Figure 15-12 is a timing waveform of a read cycle followed by a write cycle, with an extra
recovery state inserted into the read cycle.
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Figure 15-11.  Burst Read/Write Transactions with 1,0 Wait States - Extra Tr State on Read, 
16-Bit Bus
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Figure 15-12.  Burst Read/Write Transactions with 1,0 Wait States, Extra Tr State on Read, 16-
Bit Bus
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15.2.4 Bus and Control Signals During Recovery and Idle States

Valid bus transactions are bounded by ADS going active at the beginning of Ta states and BLAST
going inactive at the beginning of Tr states. During Tr and Ti states, bus and control pin logic
levels are defined in such a way as to avoid unnecessary pin transitions that waste power. In all
cases, the bus and control pins are completely quiet for instruction fetches and data loads that are
cache hits.

If the last bus cycle is a read, the address/data bus floats during all Tr states. If the last bus cycle is
a write, the address/data bus freezes during Tr states. The processor drives control pins such as
ALE, ADS, BLAST and DEN to their inactive states during Tr. Byte enables BE3:0 are always
driven to logic high during Tr, even when the processor uses them under alternate definitions.
Outputs without clearly defined active/inactive states such as A3:2, WIDTH/HLTD1:0, D/C, W/R
and DT/R freeze during Tr.

When the bus enters the Ti state, the bus and control pins will likewise freeze to inactive states.
The exact states of the address/data pins depend on how the processor enters the Ti state. If the
processor enters Ti from a Tr ending a write cycle, the processor continues driving data on
AD31:0. If the processor enters Ti from a read cycle or from a Th state, AD31:4 will be driven
with the upper 28 bits of the read address. AD3:2 will be driven identically as A3:2 (the word
address of the last read transfer). The processor will usually drive AD1:0 with the last SIZE infor-
mation. In cases where the core cancels a previously issued bus request, AD1:0 are indeterminate.

15.2.5 Data Alignment

The i960 Jx microprocessor’s Bus Control Unit (BCU) directly supports both big-endian and
little-endian aligned accesses. The processor also transparently supports both big-endian and little-
endian unaligned accesses but with reduced performance. Unaligned accesses are broken down
into a series of aligned accesses with the assistance of microcode executing on the processor. 

Alignment rules for loads and stores are based on address offsets from natural data boundaries.
Table 15-5 lists the natural boundaries for the various data widths and Table 15-6 through 15-8 list
all possible combinations of bus accesses resulting from aligned and unaligned requests. Figure
15-13 and Figure 15-14 also depict all the combinations for 32-bit buses. Figure 15-15 is a
functional waveform for a series of four accesses resulting from a misaligned double word read
request.

The fault configuration word in the Process Control Block (PRCB), can configure the processor to
handle unaligned accesses non-transparently by generating an OPERATION.UNALIGNED fault
after executing any unaligned access. See section 11.3.1.2, “Process Control Block (PRCB)” (pg.
11-14).
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Table 15-5.  Natural Boundaries for Load and Store Accesses

Data Width Natural Boundary (Bytes)

Byte 1

Short Word 2

Word 4

Double Word 8

Triple Word 16

Quad Word 16

Table 15-6.  Summary of Byte Load and Store Accesses

Address Offset from 
Natural Boundary 

(in Bytes)

Accesses on 8-Bit Bus 
(WIDTH1:0=00)

Accesses on 16 Bit Bus 
(WIDTH1:0=01)

Accesses on 32 Bit Bus 
(WIDTH1:0=10)

+0 (aligned) byte access byte access byte access

Table 15-7.  Summary of Short Word Load and Store Accesses

Address Offset from 
Natural Boundary 

(in Bytes)

Accesses on 8-Bit Bus 
(WIDTH1:0=00)

Accesses on 16 Bit Bus 
(WIDTH1:0=01)

Accesses on 32 Bit Bus 
(WIDTH1:0=10)

+0 (aligned) burst of 2 bytes short-word access short-word access

+1 2 byte accesses 2 byte accesses 2 byte accesses
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Table 15-8.  Summary of n-Word Load and Store Accesses (n = 1, 2, 3, 4)

Address Offset 
from Natural 

Boundary in Bytes

Accesses on 8-Bit Bus 
(WIDTH1:0=00)

Accesses on 16 Bit Bus 
(WIDTH1:0=01)

Accesses on 32 Bit 
Bus (WIDTH1:0=10)

+0 (aligned) 
(n =1, 2, 3, 4)

• n burst(s) of 4 bytes • case n=1:
burst of 2 short words

• case n=2:
burst of 4 short words

• case n=3:
burst of 4 short words
burst of 2 short words

• case n=4:
2 bursts of 4 short words

• burst of n word(s)

+1 (n =1, 2, 3, 4)
+5 (n = 2, 3, 4)
+9 (n = 3, 4)
+13 (n = 3, 4)

• byte access
• burst of 2 bytes
• n-1 burst(s) of 4 bytes
• byte access

• byte access
• short-word access
• n-1 burst(s) of 2 short words
• byte access

• byte access
• short-word access
• n-1 word 

access(es)
• byte access

+2 (n =1, 2, 3, 4)
+6 (n = 2, 3, 4)
+10 (n = 3, 4)
+14 (n = 3, 4)

• burst of 2 bytes
• n-1 burst(s) of 4 bytes
• burst of 2 bytes

• short-word access
• n-1 burst(s) of 2 short words
• short-word access

• short-word access
• n-1 word 

access(es)
• short-word access

+3 (n =1, 2, 3, 4)
+7 (n = 2, 3, 4)
+11 (n = 3, 4)
+15 (n = 3, 4)

• byte access
• n-1 burst(s) of 4 bytes
• burst of 2 bytes
• byte access

•  byte access
• n-1 burst(s) of 2 short words
• short-word access
• byte access

• byte access
• n-1 word 

access(es)
• short-word access
• byte access

+4 (n = 2, 3, 4)
+8 (n = 3, 4)
+12 (n = 3, 4)

• n burst(s) of 4 bytes • n burst(s) of 2 short words • n word access(es)
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Figure 15-13.  Summary of Aligned and Unaligned Accesses (32-Bit Bus)
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Figure 15-14.  Summary of Aligned and Unaligned Accesses (32-Bit Bus) (Continued)
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Figure 15-15.  Accesses Generated by Double Word Read Bus Request, Misaligned One Byte 
From Quad Word Boundary, 32-Bit Bus, Little Endian
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15.2.6 Byte Ordering and Bus Accesses

The default byte-order for both instruction and data accesses is programmed in the DLMCON
register to be either little- or big-endian. On the i960 Jx processor, DLMCON.be controls the
default byte order for internal (on-chip data ram and data cache) accesses as well as external
accesses. The programming of DLMCON is discussed in section 12.6.2, “Selecting the Byte
Order” (pg. 12-11).

The processor handles the byte data type the same regardless of byte ordering. Table 15-9 shows
byte data 0DDH being transferred on 8, 16 and 32 bit buses.

For the short word data type, assume that a hexadecimal value of 0CCDDH is stored in one of the
processor’s internal registers. Table 15-10 shows how this short word is transferred on the bus to
either a little endian or big endian memory region. Note that the short word goes out on different
data lines on a 32-bit bus depending upon whether address line A1 is odd or even. In this example,
the transfer is assumed to be aligned.

For the word data type, assume that a hexadecimal value of 0AABBCCDDH is stored in an
internal processor register, where 0AAH is the word’s most significant byte and 0DDH is the least
significant byte. Table 15-11 shows how this word is transferred on the bus to an aligned address
in either little endian or big endian memory.

The i960 Jx processor supports multi-word big endian data types with individual word accesses.
Bytes in each word are stored in big-endian order; however, words are stored in little-endian order.
Consider Figure 15-16, which illustrates a double word store to big endian memory.

           

Table 15-9.  Byte Ordering on Bus Transfers, Word Data Type

Word Data Type Bus Pins (AD31:0)

Bus
Width

Addr Bits
A1, A0

Xfer
Little Endian Big Endian

31:24 23:16 15:8 7:0 31:24 23:16 15:8 7:0

32 bit 00 1st AA BB CC DD DD CC BB AA

16 bit
00

10

1st

2nd

--

--

--

--

CC

AA

DD

BB

--

--

--

--

BB

DD

AA

CC

8 bit

00

01

10

11

1st

2nd

3rd

4th

--

--

--

--

--

--

--

--

--

--

--

--

DD

CC

BB

AA

--

--

--

--

--

--

--

--

--

--

--

--

AA

BB

CC

DD
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Figure 15-16.  Multi-Word Access to Big-Endian Memory Space

Table 15-10.  Byte Ordering on Bus Transfers, Short-Word Data Type

Short-Word Data Type Bus Pins (AD31:0)

Bus
Width

Addr Bits
A1, A0

Xfer
Little Endian Big Endian

31:24 23:16 15:8 7:0 31:24 23:16 15:8 7:0

32 bit
00

10

1st

1st

--

CC

--

DD

CC

--

DD

--

--

DD

--

CC

DD

--

CC

--

16 bit X0 1st -- -- CC DD -- -- DD CC

8 bit
X0

X1

1st

2nd

--

--

-- -- DD

CC

--

--

--

--

--

--

CC

DD

Table 15-11.  Byte Ordering on Bus Transfers, Byte Data Type

Byte Data Type Bus Pins (AD31:0)

Bus
Width

Addr Bits
A1, A0

Xfer
Little and Big Endian

31:24 23:16 15:8 7:0

32 bit

00

01

10

11

1st

1st

1st

1st

--

--

--

DD

--

--

DD

--

--

DD

--

--

DD

--

--

--

16 bit
X0

X1

1st

1st

--

--

--

--

--

DD

DD

--

8 bit XX 1st -- -- -- DD

B   B  A A   9   9    8  8  

F F   E E   D D  C C

Registers
R3

R4

R6

R5

...

...

B B
A A

Memory

9 9
8 8
F F
E E
D D
C C

stl  r4,A

A
A+1
A+2
A+3
A+4
A+5
A+6
A+7
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15.2.7 Atomic Bus Transactions

The atomic instructions, atadd and atmod, consist of a load and store request to the same memory
location. Atomic instructions require indivisible, read-modify-write access to memory. That is,
another bus agent must not access the target of the atomic instruction between read and write
cycles. Atomic instructions are necessary to implement software semaphores.

For atomic bus accesses, the 80960Jx processor asserts the LOCK pin during the first Ta of the
read operation and deasserts LOCK in the last data transfer of the write operation. LOCK is
deasserted at the same clock edge that BLAST is asserted. The i960Jx processor does not assert
LOCK except while a read-modify-write operation is in progress. While LOCK is asserted, the
processor can perform other, non-atomic, accesses such as fetches. However, the 80960Jx
processor will not acknowledge HOLD requests. This behavior is an enhancement over earlier
i960 microprocessors. Figure 15-17 illustrates locked read/write accesses associated with an
atomic instruction. 
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Figure 15-17.  The LOCK Signal

15.2.8 Bus Arbitration

The i960 Jx processor can share the bus with other bus masters, using its built-in arbitration
protocol. The protocol assumes two bus masters: a default bus master (typically the 80960Jx) that
controls the bus and another that requests bus control when it performs an operation (e.g., a DMA
controller). More than two bus masters may exist on the bus, but this configuration requires
external arbitration logic

Three processor signal pins comprise the bus arbitration pin group.

CLKIN

AD31:0

ADS

W/R

BLAST

ALE

Ta Td Ti TiTr Ti Ta Td Tr

LOCK

RDYRCV

Addr Invalid Addr
D
In

~ ~
~ ~

~ ~
~ ~

~ ~
~ ~

~ ~
~ ~

~ ~
~ ~

Data
Out
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15.2.8.1 HOLD/HOLDA Protocol

In most cases, the i960 Jx processor controls the bus; an I/O peripheral (e.g., a communications
controller) requests bus control. The processor and I/O peripheral device exchange bus control
with two signals, HOLD and HOLDA.

HOLD is an i960 Jx processor synchronous input signal which indicates that the alternate master
needs the bus. HOLD may be asserted at any time so long as the transition meets the processors
setup and hold requirements. HOLDA (hold acknowledge) is the processor’s output which
indicates surrender of the bus. When the i960 Jx processor asserts HOLDA, it enters the Th (hold)
state (see Figure 15.1). If the last bus state was Ti or the last Tr of a bus transaction, the processor
is guaranteed to assert HOLDA and float the bus on the same clock edge in which it recognizes
HOLD. Similarly, the processor deasserts HOLDA on the same edge in which it recognizes the
deassertion of HOLD. Thus, bus latency is no longer than it takes the processor to finish any bus
access in progress.

If the bus is in hold and the 80960Jx needs to regain the bus to perform a transaction, the processor
does not deassert HOLDA. In many cases, however, it will assert the BSTAT pin (see section
15.2.8.2, BSTAT Signal).

Unaligned load and store bus requests are broken into multiple accesses and the processor can
relinquish the bus between those transactions. When the alternate bus master gives control of the
bus back to the 80960Jx, the processor will immediately enter a Ta state to continue those accesses
and respond to any other bus requests. If no requests are pending, the processor will enter the idle
state.

Figure 15-18 illustrates a HOLD/HOLDA arbitration sequence.
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Figure 15-18.  Arbitration Timing Diagram for a Bus Master

The HOLD/HOLDA arbitration functions during processor reset. The bus controller acknowledges
HOLD while RESET is asserted because the bus is idle. If RESET is asserted while HOLDA is
asserted (the processor has acknowledged the HOLD), the processor remains in the HOLDA state.
The processor does not continue reset activities until HOLD is removed and the processor removes
HOLDA.

15.2.8.2 BSTAT Signal

The i960 Jx microprocessor extends the HOLD/HOLDA protocol with a bus status (BSTAT)
signal. In simplest terms, assertion of the BSTAT output pin indicates that the CPU may soon stall
unless it obtains (or retains) control of the bus. This indication is a useful input to arbitration logic,
whether or not the 80960Jx is the primary bus master.

The processor asserts BSTAT when one or more of the following conditions are true:

• The bus queue in the bus control unit (BCU) becomes full for any reason.

• An instruction fetch request is pending or being serviced on the bus. This behavior promotes
performance by supporting instruction cache fills.

CLKIN

Valid

Outputs:
AD31:0,

ALE, ALE,
ADS, A3:2,

BE3:0,
WIDTH/HLTD1:0,

D/C, W/R,
DT/R, DEN,

BLAST, LOCK

HOLD

HOLDA

∼ ∼
∼ ∼

∼ ∼
∼ ∼

Valid

∼ ∼
∼ ∼

∼ ∼
∼ ∼

∼ ∼

F_XL013A

Ti or Tr Th Th Ti or Ta
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• A load request has been issued to the BCU. This behavior promotes performance by
supporting early data loading.

• A special operation is underway that requires emptying the bus queue. Examples of such
operations are execution of the HALT instruction and register stores that control logical or
physical memory configuration.

The processor can assert BSTAT on any rising CLKIN edge. Although BSTAT activation suggests
bus starvation, it does not necessarily imply that the processor will definitely stall or that it is
currently stalled.

When the 80960Jx is the primary bus master and asserts BSTAT, arbitration logic can work more
intelligently to anticipate and prevent processor bus stalls. Depending on the importance of the
alternate bus master’s task, ownership of the bus can be modulated. If the bus is in hold, control
can be relinquished back to the microprocessor immediately or after an optimal delay. Of course,
BSTAT can be ignored completely if the loss in processor bandwidth can be tolerated.

When the 80960Jx is not the primary bus master, the BSTAT signal becomes the means to request
the bus from the primary master. As described above, BSTAT will be activated for all loads and
fetches, but store requests do not activate BSTAT unless they fill the bus queue. If the processor
needs priority access to the bus to perform store operations, replace store instructions with the
atomic modify (atmod) instruction, using a mask operand of all one’s. atmod is a read-modify-
write instruction, so the processor will assert BSTAT when the load transaction is posted to the bus
queue. When the load begins, LOCK# is asserted, which blocks recognition of hold requests until
the store portion of atmod completes.

The processor deasserts BSTAT when all pending requests in the bus queue have been issued.
BSTAT is typically deasserted during the same clock where BLAST is asserted. When a single bus
request results in multiple accesses, the processor deasserts BSTAT during the first access. In some
cases the processor may delay deasserting BSTAT for a few clock cycles due to internal
arbitration.

15.3 BUS APPLICATIONS

The i960 Jx microprocessor is a cost-effective building block for a wide spectrum of embedded
systems. This section describes common interfaces for the 80960Jx to external memory and I/O
devices.

15.3.1 System Block Diagrams

Block diagrams in Figure 15-19 through Figure 15-21 are generalized diagrams with bus
topologies representative of a number of potential 80960Jx systems. These diagrams do not
represent any particular i960 Jx processor-based applications.
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In most i960 Jx processor systems, the 80960Jx is the primary master of the local bus. A number of
memory and I/O devices typically interface to the processor, either directly or through buffers and
transceivers. An example of such a system might be a laser beam printer.

Systems with multiple I/O channels frequently use dual-ported memory to link several identical
I/O devices to the local bus, as in Figure 15-19. These systems are more complex, but performance
and flexibility improve because bus traffic is partitioned away from the i960 Jx processor’s local
bus. An example of such a system might be a network hub.

Figure 15-19.  Generalized 80960Jx System with 80960 Local Bus

A more elaborate system would connect the 80960Jx’s bus to a backplane through bus interface
logic as shown in Figure 15-20. The backplane bus (or system bus) connects to multiple high
performance I/O devices (often with DMA) and large buffer memory for caching packets of data
from disk drives or LANs. Backplane buses can connect to other microprocessor local buses, too,
creating a loosely coupled multiprocessor system for resource sharing.

i960 Jx
Processor

80960 Local Bus

Base
I/O

Dual Port
Memory

High-Perf
I/O

Local
Memory



EXTERNAL BUS

15-36

Figure 15-20.  Generalized 80960Jx System with 80960 Local Bus and Backplane Bus

Buses such as the PCI (Peripheral Component Interconnect) local bus connect to the 80960 bus
through a bridge chip, which employs DMA, FIFOs and mailboxes for bus-to-bus communication.
The PCI local bus can connect shared buffer memory and high performance I/O devices. The
bandwidth of the PCI local bus is particularly appropriate for bridge interfacing to high-end
processors such as the Pentium (R) microprocessor, as illustrated in Figure 15-21. In this way, the
i960Jx can improve the performance of complex systems such as servers by sparing the main
system CPU and its local memory the task of buffering low-level I/O.
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Figure 15-21.  80960Jx System with 80960 Local Bus, PCI Local Bus and Local Bus for High 
End Microprocessor

15.3.1.1 Memory Subsystems

Memory systems for the i960 Jx processor include a mix of non-volatile and volatile devices
including ROM, DRAM, SRAM or flash memory. The circuit designer may take advantage of
programmable bus width to optimize the number of devices in each memory array. For example,
the processor can boot from a single, slow, 8-bit ROM device, then execute from code loaded to a
faster, wider and larger RAM array. 

All systems must contain burstable memory, since the processor employs burst transactions for
instruction fetches and stack operations. Bursting cannot be turned off on the i960Jx processor.
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15.3.1.2 I/O Subsystems

I/O subsystems vary widely according to the needs of specific applications. Individual peripheral
devices may be as generic as discrete logic I/O ports or as specialized as an ISDN controller.

Typical peripherals for desktop/server intelligent I/O applications are Small Computer System
Interface controllers supporting SCSI-1 (8-bit) or SCSI-2 (8/16/32-bit) standards.

For network applications such as ATM adapters, smart hubs and routers, typical peripherals
include controllers for older protocols such as Ethernet and FDDI and controllers for newer
protocols such as ATM (Asynchronous Transfer Mode) and Fibre Channel.

Typical peripherals for non-impact printer controllers include printer video ports, engine
command/status ports, asynchronous serial controllers, IEEE 1284 parallel ports, LocalTalk(TM)
ports and PCMCIA memory card controllers.
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CHAPTER 16
HALT MODE

This chapter discusses HALT mode and its effect on power consumption. The i960® Jx micropro-
cessor initially enters HALT mode when a halt instruction executes. The processor quickly exits
the HALT mode upon receipt of RESET or any interrupt allowed by the current process priority.
Exit through an interrupt causes execution to continue within the appropriate interrupt handler
routine. HALT mode can be used as an efficient, low-power method to wait for interrupts.

16.1 Entering HALT Mode

Entry into HALT mode by the halt instruction causes the following actions to occur:

• Interrupts are enabled or disabled based on the value of the src1 argument supplied in the halt
instruction.

• The processor ensures that all previous load and store operations have completed before
continuing. If the bus queues are not empty, the processor asserts the BSTAT pin and waits for
the bus queues to empty.

• The processor attempts to reduce power consumption to more efficiently wait for exit from
HALT mode.

The processor performs an implicit SYNCF before attempting to enter HALT mode. If a fault is
detected for a previous instruction, the processor will switch control to the appropriate fault
handler instead of executing the halt. If the fault is recoverable, the processor executes the halt
instruction upon return from the fault handler. A trace fault on the halt instruction will be serviced
after the processor exits HALT mode.

halt can only be executed while in supervisor mode; a TYPE.MISMATCH fault occurs when
attempting to execute the instruction in user mode.

16.2 Processor Operation During HALT Mode

The i960 Jx processor’s power needs drop by approximately an order of magnitude while in HALT
mode. See the 80960JA/JF Embedded 32-bit Microprocessor Data Sheet and the 80960JD
Embedded 32-bit Microprocessor Data Sheet. Code execution stops but the processor maintains its
internal state and can still respond to certain internal and external events.



HALT MODE

16-2

The internal timers, when enabled, continue to decrement each cycle during HALT mode and can
even force the processor out of HALT mode if either timer generates an interrupt of sufficient
priority. 

The processor responds normally to external events such as interrupt requests, hardware RESET,
and HOLD requests. 

Output pins are driven to known states during HALT mode and provide a unique external
indication of the mode. Most importantly, WIDTH/HLTD is set to 112. Refer to the 80960JA/JF
Embedded 32-bit Microprocessor Data Sheet or the 80960JD Embedded 32-bit Microprocessor
Data Sheet for more information.

All other control signals are inactive. The processor attempts to drive each inactive pin to the same
value the pin held before entering HALT mode; this reduces power consumption while in HALT
mode.

The processor acknowledges HOLD requests on the external bus properly; however, receiving a
HOLD request does not cause the processor to exit HALT mode. During the HOLD acknowledge,
the processor drives all bus output pins to high impedance. When HOLD is deasserted, the
processor drives the output bus pins back to the normal HALT mode state described above.

The following JTAG features are unaffected by HALT mode: 

• access to Boundary-Scan through the Test-Access Port (TAP) 

• access to IDCODE through TAP

• access to RUNBIST through TAP

• access to BYPASS through TAP

16.3 Exiting HALT Mode

A number of external events can force the processor to exit HALT mode:

• The presentation of an interrupt to the processor that should be delivered based on the
processor’s current process priority and the interrupt controller’s normal prioritization
mechanism (as described in the interrupt chapter).

The return from an interrupt that forced the processor to exit HALT mode causes 
execution to resume at the instruction immediately after the halt instruction.

• The assertion of RESET. When RESET is subsequently deasserted the processor enters the
normal initialization process.

Note that the WIDTH/HLTD pins stay at “11” even after coming out of HALT mode until the next
external bus access.
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16.3.1 Exiting HALT Mode for any Interrupt

Normally, only interrupts prioritized higher than the processor’s current process priority cause the
processor to exit HALT mode.

In an application that requires interrupts of a lower priority to force exit from HALT mode, the
process priority must be lowered. Lowering of the process priority and issuing of the halt
instruction must be non-interruptible so that if the desired interrupt occurs too early, it does not
interrupt before the halt instruction is issued.

The recommended way to provide a non-interruptible window is as follows. The halt instruction
must be preceded by a sequence of an intctl instruction that disables interrupts, followed by a
modpc instruction that lowers the current process priority. Subsequently issuing a halt instruction
with a src1 value of 1 causes interrupts to be enabled at the new process priority. Note that by
lowering the process priority, interrupts that are pending at a lower priority before the halt
instruction executes, are now free to bring the processor out of HALT mode almost immediately.
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CHAPTER 17
TEST FEATURES

This chapter describes the i960® Jx processor’s test features, including ONCE (On-Circuit
Emulation) and Boundary Scan (JTAG). Together these two features create a powerful
environment for design debug and fault diagnosis.

17.1 ON-CIRCUIT EMULATION (ONCE)

On-circuit emulation aids board-level testing. This feature allows a mounted i960 Jx processor to
electrically “remove” itself from a circuit board. This allows for system-level testing where a
remote tester exercises the processor system. In ONCE mode, the processor presents a high
impedance on every pin, except for the JTAG Test Data Output (TDO). All pullup transistors
present on input pins are also disabled and internal clocks stop. In this state the processor’s power
demands on the circuit board are nearly eliminated. Once the processor is electrically removed, a
functional tester such as an In-Circuit Emulator (ICE) system can emulate the mounted processor
and execute a test of the i960 Jx processor system.

17.1.1 Entering/Exiting ONCE Mode

The i960 Jx processor uses the dual function LOCK/ONCE pin for ONCE. The LOCK/ONCE pin
is an input while RESET is asserted. The i960 Jx processor uses this pin as an output when the
ONCE mode conditions are not present.

ONCE mode is entered by asserting (low) the LOCK/ONCE pin while the processor is in the reset
state, or by executing the HIGHZ JTAG private instruction. The LOCK/ONCE pin state is latched
on the RESET signal’s rising edge. 

• To enter ONCE mode, an external tester drives the ONCE pin low (overcoming the internal
pull-up resistor) and initiates a reset cycle. 

• To exit ONCE mode, perform a hard reset with the ONCE pin deasserted (high) prior to the
rising edge of RESET. It is not necessary to cycle power when exiting ONCE mode.

See the 80960JA/JF Embedded 32-bit Microprocessor Data Sheet and the 80960JD Embedded 32-
bit Microprocessor Data Sheetfor specific timing of the LOCK/ONCE pin and the characteristics
of the on-circuit emulation mode.
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17.2 BOUNDARY SCAN (JTAG)

The i960 Jx processor provides test features compatible with IEEE Standard Test Access Port and
Boundary Scan Architecture (IEEE Std. 1149.1). JTAG ensures that components function
correctly, connections between components are correct, and components interact correctly on the
printed circuit board.

To date, the i960 Kx, Sx and Cx processors do not implement IEEE 1491.1 Standard Test Access
Port and Boundary-Scan Architecture. 

17.2.1 Boundary Scan Architecture

Boundary scan test logic consists of a Boundary-Scan register and support logic. These are
accessed through a Test Access Port (TAP). The TAP provides a simple serial interface that allows
all processor signal pins to be driven and/or sampled, thereby providing the direct control and
monitoring of processor pins at the system level.

This mode of operation is valuable for design debugging and fault diagnosis since it permits
examination of connections not normally accessible to the test system. The following subsections
describe the boundary scan test logic elements: TAP controller, Instruction register, Test Data
registers and TAP elements.

17.2.1.1 TAP Controller

The TAP controller is a 16 state machine, which provides the internal control signals to the
instruction register and the test data registers. The state of the TAP controller is determined by the
logic present on the Test Mode Select (TMS) pin on the rising edge of TCK. See Figure 17-2 for
the state diagram of the TAP controller.

17.2.1.2 Instruction Register

The instruction register (IR) holds instruction codes shifted through the Test Data Input (TDI) pin.
The instruction codes are used to select the specific test operation to be performed and the test data
register to be accessed.
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17.2.1.3 Test Data Registers

The four test data registers are: 

• Device ID register (see section 17.3.2.1, “Device Identification Register” (pg. 17-6)).

• Bypass register (see section 17.3.2.2, “Bypass Register” (pg. 17-6)).

• RUNBIST register (see section 17.3.2.3, “RUNBIST Register” (pg. 17-7)).

• Boundary-Scan register (see section 17.3.2.4, “Boundary-Scan Register” (pg. 17-7)).

17.2.1.4 TAP Elements

The Test Access Port (TAP) contains a TAP controller, an instruction register, a group of test data
registers, and the TAP pins as shown in the block diagram in Figure 17-1. The TAP is the general-
purpose port that provides access to the test data registers and instruction registers through the TAP
controller. 

Figure 17-1.  Test Access Port Block Diagram
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Figure 17-2.  TAP Controller State Diagram
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The i960 Jx processor’s TAP is composed of four input connections (TMS, TCK, TRST and TDI)
and one output connection (TDO). These pins are described in Table 17-1.

17.3 TAP REGISTERS

The instruction and test data registers are separate shift-register paths connected in parallel. The
TAP controller determines which one of these registers is connected between the TDI and TDO
pins.

17.3.1 Instruction Register (IR)

The Instruction Register (IR) is a parallel-loadable, master/slave-configured 4-bit wide, serial-shift
register with latched outputs. Data is loaded into the IR serially through the TDI pin clocked by the
rising edge of TCK when the TAP controller is in the Shift_IR state. The shifted-in instruction
becomes active upon latching from the master-stage to the slave-stage in the Update_IR state. At
that time the IR outputs along with the TAP finite state machine outputs are decoded to select and
control the test data register selected by that instruction. Upon latching, all actions caused by any
previous instructions must terminate. 

Table 17-1.  TAP Controller Pin Definitions 

Pin Name Mnemonic Type Definition

Test Clock TCK Input
Clock in put for the TAP controller, the instruction register, 
and the test data registers. The JTAG unit will retain its state 
when TCK is stopped at “0” or “1”. 

Test Mode Select TMS Input
Controls the operation of the TAP controller. The TMS input 
is pulled high when not being driven. TMS is sampled on the 
rising edge of TCK.

Test Data In  TDI Input

Serial date input to the instruction and test data registers. 
Data at TDI is sampled on the rising edge of TCK. Like TMS, 
TDI is pulled high when not being driven. Data shifted from 
TDI through a register to TDO appears non-inverted at TDO.

 Test Data Out TDO Output

Used for serial data output. Data at TDO is driven at the 
falling edge of TCK and provides an inactive (high-Z) state 
when scanning is not in progress. The non-shift inactive 
state is provided to support parallel connection of TDO 
outputs at the board or module level.

Asynchronous Reset TRST Input

Provides asynchronous initialization of the test logic. TRST 
is pulled high when not being driven. Assertion of this pin 
puts the TAP controller in the Test_Logic_Reset (initial) 
state. For minimum pulse width specifications, see the 
80960JA/JF Embedded 32-bit Microprocessor Data Sheet or 
the 80960JD Embedded 32-bit Microprocessor Data Sheet.
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The instruction determines the test to be performed, the test data register to be accessed, or both
(see Table 17-2). The IR is four bits wide. When the IR is selected in the Shift_IR state, the most
significant bit is connected to TDI, and the least significant bit is connected to TDO. TDI is shifted
into IR on each rising edge of TCK, as long as TMS remains asserted. When the processor enters
the Capture_IR TAP controller state, fixed parallel data (00012) is captured. During Shift_IR,
when a new instruction is shifted in through TDI, the value 00012 is always shifted out through
TDO least significant bit first. This helps identify instructions in a long chain of serial data from
several devices.

Upon activation of the TRST reset pin, the latched instruction will asynchronously change to the
idcode instruction. If the TAP controller moved into the Test_Logic_Reset state other than by
reset activation, the opcode will change as TDI is shifted, and will become active on the falling
edge of TCK. See Figure 17-4 for an example of loading the instruction register.

17.3.2 TAP Test Data Registers

The i960 Jx processor contains a device identification register and three test data registers (Bypass,
Boundary-Scan and RUNBIST). Each test data register selected by the TAP controller is
connected serially between TDI and TDO. TDI is connected to the test data register’s most
significant bit. TDO is connected to the least significant bit. Data is shifted one bit position within
the register towards TDO on each rising edge of TCK. The following sections describe each of the
test data registers. See Figure 17-5 for an example of loading the data register.

17.3.2.1 Device Identification Register

The Device Identification register is a 32-bit register containing the manufacturer’s identification
code, part number code and version code in the format shown in Figure 11-8. The format of the
register is discussed in Section 11.4, DEVICE IDENTIFICATION ON RESET (pg. 11-21). Table
11-7 lists the codes corresponding to the i960 Jx processor. The identification register is selected
only by the idcode instruction. When the TAP controller’s Test_Logic_Reset state is entered,
idcode is automatically loaded into the instruction register. The Device Identification register has
a fixed parallel input value that is loaded in the Capture_DR state.

17.3.2.2 Bypass Register

The required Bypass Register, a one-bit shift register, provides the shortest path between TDI and
TDO when a bypass instruction is in effect. This allows rapid movement of test data to and from
other components on the board. This path can be selected when no test operation is being
performed. While the bypass register is selected, data is transferred from TDI to TDO without
inversion.

Any instruction that does not make use of another test data register may select the Bypass register
as its active TDI to TDO path.
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17.3.2.3 RUNBIST Register

The RUNBIST register is a one-bit register that contains the result of the execution of the runbist
instruction execution. The runbist instruction runs the built-in self-test (BIST) program resident
inside the processor. After the built-in self-test completes, the processor must be recycled through
the reset state to begin normal operation. See section 11.2.2, “Self Test Function (STEST, FAIL)”
(pg. 11-6) for details of the Built-In-Self-Test algorithm.

17.3.2.4 Boundary-Scan Register

The Boundary-Scan register is a required set of serial-shiftable register cells, configured in
master/slave stages and connected between each of the i960 Jx processor’s pins and on-chip system
logic. Pins NOT in the Boundary-Scan chain are power, ground and JTAG pins.

The Boundary-Scan register cells are dedicated logic and do not have any system function. Data
may be loaded into the Boundary-Scan register master-cells from the device input pins and output
pin-drivers in parallel by the mandatory sample/preload and extest instructions. Parallel loading
takes place on the rising edge of TCK in the Capture_DR state.

Data may be scanned into the Boundary-Scan register serially via the TDI serial-input pin, clocked
by the rising edge of TCK in the Shift_DR state. When the required data has been loaded into the
master-cell stages, it is be driven into the system logic at input pins or onto the output pins on the
falling edge of TCK in the Update_DR state. Data may also be shifted out of the Boundary-Scan
register by means of the TDO serial-output pin at the falling edge of TCK.

17.3.3 Boundary Scan Instruction Set

The i960 Jx processor supports three mandatory boundary scan instructions (bypass,
sample/preload and extest). The i960 Jx processor also contains two additional public instruc-
tions (idcode and runbist). Table 17-2 lists the i960 Jx processor’s boundary scan instruction
codes.
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17.3.4 IEEE Required Instructions

Table 17-2.  Boundary Scan Instruction Set

Instruction Code Instruction Name Instruction Code Instruction Name

00002 extest 10002 private

00012 sampre 10012 not used

00102 idcode 10102 not used

00112 not used 10112 private

01002 private 11002 private

01012 not used 11012 not used

01102 not used 11102 not used

01112 runbist 11112 bypass

Table 17-3.  IEEE Instructions  (Sheet 1 of 2)

Instruction / 
Requisite Opcode Description

extest
IEEE 1149.1

Required

00002

extest initiates testing of external circuitry, typically board-level interconnects and 
off chip circuitry. extest connects the Boundary-Scan register between TDI and 
TDO in the Shift_IR state only. When extest is selected, all output signal pin 
values are driven by values shifted into the Boundary-Scan register and may 
change only on the falling-edge of TCK in the Update_DR state. Also, when extest 
is selected, all system input pin states must be loaded into the Boundary-Scan 
register on the rising-edge of TCK in the Capture_DR state. Values shifted into 
input latches in the Boundary-Scan register are never used by the processor’s 
internal logic.

sampre
IEEE 1149.1

Required

00012

sample/preload performs two functions:

• When the TAP controller is in the Capture-DR state, the sample instruction 
occurs on the rising edge of TCK and provides a snapshot of the component’s 
normal operation without interfering with that normal operation. The 
instruction causes Boundary-Scan register cells associated with outputs to 
sample the value being driven by or to the processor.

• When the TAP controller is in the Update-DR state, the preload instruction 
occurs on the falling edge of TCK. This instruction causes the transfer of data 
held in the Boundary-Scan cells to the slave register cells. Typically the slave 
latched data is then applied to the system outputs by means of the extest 
instruction. 

idcode

IEEE 1149.1

Optional

00102

idcode is used in conjunction with the device identification register. It connects the 
identification register between TDI and TDO in the Shift_DR state. When selected, 
idcode parallel-loads the hard-wired identification code (32 bits) on TDO into the 
identification register on the rising edge of TCK in the Capture_DR state.

NOTE: The device identification register is not altered by data being shifted in on 
TDI.
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17.3.5 TAP Controller

The TAP controller is a 16-state synchronous finite state machine that controls the sequence of test
logic operations. The TAP can be controlled via a bus master. The bus master can be either
automatic test equipment or a component (i.e., PLD) that interfaces to the Test Access Port (TAP).
The TAP controller changes state only in response to a rising edge of TCK or power-up. The value
of the test mode select (TMS) input signal at a rising edge of TCK controls the sequence of state
changes.

The TAP controller is not automatically initialized on power-up. Therefore, it is important that the
system resets the TAP controller after power up by asserting the TRST pin. In addition, the TAP
controller can be initialized by applying a high signal level on the TMS input for five TCK periods.
Systems that do not use JTAG, or that normally do not apply a clock to TCK should provide a pull-
down resistor on TRST to hold the TAP controller in the Test_Logic_Reset state. A 2.7k value is
strong enough to overcome the TRST pin’s internal pull-up, but weak enough to allow automatic
test equipment to overdrive it during production testing. Alternatively, the TRST pin may be
connected to ground if the Test Access Port will never be used.

bypass

IEEE 1149.1

Required

11112

bypass instruction selects the Bypass register between TDI and TDO pins while in 
SHIFT_DR state, effectively bypassing the processor’s test logic. 02 is captured in 
the CAPTURE_DR state. This is the only instruction that accesses the Bypass 
register. While this instruction is in effect, all other test data registers have no 
effect on the operation of the system. Test data registers with both test and system 
functionality perform their system functions when this instruction is selected.

runbist
i960 Jx 
Processor 
Optional

01112

runbist selects the one-bit RUNBIST register, loads a value of 1 into it and 
connects it to TDO. It also initiates the processor’s built-in self test (BIST) feature 
which is able to detect approximately 82% of the stuck-at faults on the device. The 
processor AC/DC specifications for VCC and CLKIN must be met and RESET must 
be de-asserted prior to executing runbist.

After loading runbist instruction code into the instruction register, the TAP 
controller must be placed in the Run-Test/Idle state. bist begins on the first rising 
edge of TCK after the Run-Test/Idle state is entered. The TAP controller must 
remain in the Run-Test/Idle state until bist is completed. runbist requires approx-
imately 414,000 core cycles to complete bist and report the result to the 
RUNBIST register’s. The results are stored in bit 0 of the RUNBIST register. After 
the report completes, the value in the RUNBIST register is shifted out on TDO 
during the Shift-DR state. A value of 0 being shifted out on TDO indicates bist 
completed successfully. A value of 1 indicates a failure occurred. After bist 
completes, the processor must be recycled through the reset state to begin normal 
operation.

Table 17-3.  IEEE Instructions  (Sheet 2 of 2)

Instruction / 
Requisite

Opcode Description

Errata: BWL (12-16-94)

Sentence 6 of the  first
paragraph of section
17.3.5 incorrectly
stated:

“The TAP controller is
automatically initialized
on powerup.” 

A new paragraph 
(<--left) has been added
between the first and
second paragraphs.
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Behavior of the TAP controller and other test logic in each controller state is described in the
following subsections. For greater detail on the state machine and the public instructions, refer to
IEEE 1149.1 Standard Test Access Port and Boundary-Scan Architecture Document.

17.3.5.1 Test Logic Reset State

In this state, test logic is disabled to allow normal operation of the i960 Jx processor. Test logic is
disabled by loading the IDCODE register. No matter what the state of the controller, it enters Test-
Logic-Reset state when the TMS input is held high (1) for at least five rising edges of TCK. The
controller remains in this state while TMS is high. The TAP controller is also forced to enter this
state by enabling TRST.

If the controller exits the Test-Logic-Reset controller states as a result of an erroneous low signal
on the TMS line at the time of a rising edge on TCK (for example, a glitch due to external inter-
ference), it returns to the test logic reset state following three rising edges of TCK with the TMS
line at the intended high logic level. Test logic operation is such that no disturbance is caused to
on-chip system logic operation as the result of such an error.

17.3.5.2 Run-Test/Idle State

The TAP controller enters the Run-Test/Idle state between scan operations. The controller remains
in this state as long as TMS is held low. In the Run-Test/Idle state the runbist instruction is
performed; the result is reported in the RUNBIST register. Instructions that do not call functions
generate no activity in the test logic while the controller is in this state. The instruction register and
all test data registers retain their current state. When TMS is high on the rising edge of TCK, the
controller moves to the Select-DR-Scan state.

17.3.5.3 Select-DR-Scan State

The Select-DR-Scan state is a temporary controller state. The test data registers selected by the
current instruction retain their previous state. If TMS is held low on the rising edge of TCK when
the controller is in this state, the controller moves into the Capture-DR state and a scan sequence
for the selected test data register is initiated. If TMS is held high on the rising edge of TCK, the
controller moves into the Select-IR-Scan state. 

The instruction does not change while the TAP controller is in this state.

17.3.5.4 Capture-DR State

When the controller is in this state and the current instruction is sample/preload, the Boundary-
Scan register captures input pin data on the rising edge of TCK.Test data registers that do not have
parallel input are not changed. Also if the sample/preload instruction is not selected while in this
state, the Boundary-Scan registers retain their previous state.
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The instruction does not change while the TAP controller is in this state.

If TMS is high on the rising edge of TCK, the controller enters the Exit1-DR. If TMS is low on the
rising edge of TCK, the controller enters the Shift-DR state.

17.3.5.5 Shift-DR State

In this controller state, the test data register, which is connected between TDI and TDO as a result
of the current instruction, shifts data one bit position nearer to its serial output on each rising edge
of TCK. Test data registers that the current instruction selects but does not place in the serial path,
retain their previous value during this state. 

The instruction does not change while the TAP controller is in this state.

If TMS is high on the rising edge of TCK, the controller enters the Exit1-DR state. If TMS is low
on the rising edge of TCK, the controller remains in the Shift-DR state.

17.3.5.6 Exit1-DR State

This is a temporary controller state. When the TAP controller is in the Exit1-DR state and TMS is
held high on the rising edge of TCK, the controller enters the Update-DR state, which terminates
the scanning process. If TMS is held low on the rising edge of TCK, the controller enters the
Pause-DR state.

The instruction does not change while the TAP controller is in this state. All test data registers
selected by the current instruction retain their previous value during this state.

17.3.5.7 Pause-DR State

The Pause-DR state allows the test controller to temporarily halt the shifting of data through the
test data register in the serial path between TDI and TDO. The test data register selected by the
current instruction retains its previous value during this state. The instruction does not change in
this state.

The controller remains in this state as long as TMS is low. When TMS goes high on the rising edge
of TCK, the controller moves to the Exit2-DR state.

17.3.5.8 Exit2-DR State

This is a temporary state. If TMS is held high on the rising edge of TCK, the controller enters the
Update-DR state, which terminates the scanning process. If TMS is held low on the rising edge of
TCK, the controller enters the Shift-DR state.
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The instruction does not change while the TAP controller is in this state. All test data registers
selected by the current instruction retain their previous value during this state.

17.3.5.9 Update-DR State

The Boundary-Scan register is provided with a latched parallel output. This output prevents
changes at the parallel output while data is shifted in response to the extest, sample/preload
instructions. When the Boundary-Scan register is selected while the TAP controller is in the
Update-DR state, data is latched onto the Boundary-Scan register’s parallel output from the shift-
register path on the falling edge of TCK. The data held at the latched parallel output does not
change unless the controller is in this state.

While the TAP controller is in this state, all of the test data register’s shift-register bit positions
selected by the current instruction retain their previous values. 

The instruction does not change while the TAP controller is in this state.

When the TAP controller is in this state and TMS is held high on the rising edge of TCK, the
controller enters the Select-DR-Scan state. If TMS is held low on the rising edge of TCK, the
controller enters the Run-Test/Idle state.

17.3.5.10 Select-IR Scan State

This is a temporary controller state. The test data registers selected by the current instruction retain
their previous state. In this state, if TMS is held low on the rising edge of TCK, the controller
moves into the Capture-IR state and a scan sequence for the instruction register is initiated. If TMS
is held high on the rising edge of TCK, the controller moves to the Test-Logic-Reset state. 

The instruction does not change in this state.

17.3.5.11 Capture-IR State

When the controller is in the Capture-IR state, the shift register contained in the instruction
register loads the fixed value 00012 on the rising edge of TCK.

The test data register selected by the current instruction retains its previous value during this state.
The instruction does not change in this state. While in this state, holding TMS high on the rising
edge of TCK causes the controller to enter the Exit1-IR state. If TMS is held low on the rising
edge of TCK, the controller enters the Shift-IR state.
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17.3.5.12 Shift-IR State

When the controller is in this state, the shift register contained in the instruction register is
connected between TDI and TDO and shifts data one bit position nearer to its serial output on each
rising edge of TCK. The test data register selected by the current instruction retains its previous
value during this state. The instruction does not change.

If TMS is held high on the rising edge of TCK, the controller enters the Exit1-IR state. If TMS is
held low on the rising edge of TCK, the controller remains in the Shift-IR state.

17.3.5.13 Exit1-IR State

This is a temporary state. If TMS is held high on the rising edge of TCK, the controller enters the
Update-IR state, which terminates the scanning process. If TMS is held low on the rising edge of
TCK, the controller enters the Pause-IR state.

The test data register selected by the current instruction retains its previous value during this state. 

The instruction does not change and the instruction register retains its state.

17.3.5.14 Pause-IR State

The Pause-IR state allows the test controller to temporarily halt the shifting of data through the
instruction register. The test data registers selected by the current instruction retain their previous
values during this state. 

The instruction does not change and the instruction register retains its state.

The controller remains in this state as long as TMS is held low. When TMS goes high on the rising
edges of TCK, the controller moves to the Exit2-IR state.

17.3.5.15 Exit2-IR State

This is a temporary state. If TMS is held high on the rising edge of TCK, the controller enters the
Update-IR state, which terminates the scanning process. If TMS is held low on the rising edge of
TCK, the controller enters the Shift-IR state.

This test data register selected by the current instruction retains its previous value during this state.
The instruction does not change and the instruction register retains its state.
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17.3.5.16 Update-IR State

The instruction shifted into the instruction register is latched onto the parallel output from the
shift-register path on the falling edge of TCK. Once latched, the new instruction becomes the
current instruction. Test data registers selected by the current instruction retain their previous
values.

If TMS is held high on the rising edge of TCK, the controller enters the Select-DR-Scan state. If
TMS is held low on the rising edge of TCK, the controller enters the Run-Test/Idle state.

17.3.6 Boundary-Scan Register

The Boundary-Scan register contains a cell for each pin as well as cells for control of I/O and
HIGHZ pins. 

Table 17-4 shows the bit order of the i960 Jx processor Boundary-Scan register. All table cells that
contain “CTL” select the direction of bidirectional pins or HIGHZ output pins. If a “1” is loaded
into the control cell, the associated pin(s) are HIGHZ or selected as input. 
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17.3.6.1 Example

In the example that follows, two command actions are described. The example starts in the reset
state, a new instruction is loaded and executed. See Figure 17-3 for a JTAG example. The steps are:

1. Load the sample/preload instruction into the Instruction Register:

1.1. Select the Instruction register scan.

Table 17-4.  Boundary-Scan Register Bit Order

Bit Signal
Input/ 
Output

Bit Signal
Input/
Output

Bit Signal
Input/
Output

0 RDYRCV (TDI) I 24 DEN O 48 AD17 I/O

1 HOLD I 25 HOLDA O 49 AD16 I/O

2 XINT0 I 26 ALE O 50 AD15 I/O

3 XINT1 I 27
LOCK/ONCE 

cell
Enable cell1 51 AD14 I/O

4 XINT2 I 28 LOCK/ONCE I/O 52 AD13 I/O

5 XINT3 I 29 BSTAT O 53 AD12 I/O

6 XINT4 I 30 BE0 O 54 AD cells
Enable 

cell1

7 XINT5 I 31 BE1 O 55 AD11 I/O

8 XINT6 I 32 BE2 O 56 AD10 I/O

9 XINT7 I 33 BE3 O 57 AD9 I/O

10 NMI I 34 AD31 I/O 58 AD8 I/O

11 FAIL I 35 AD30 I/O 59 AD7 I/O

12 ALE O 36 AD29 I/O 60 AD6 I/O

13 WIDTH/HLTD1 1 37 AD28 I/O 61 AD5 I/O

14 WIDTH/HLTD0 1 38 AD27 I/O 62 AD4 I/O

15 A2 O 39 AD26 I/O 63 AD3 I/O

16 A3 O 40 AD25 I/O 64 AD2 I/O

17 CONTROL1 Enable cell1 41 AD24 I/O 65 AD1 I/O

18 CONTROL2 Enable cell1 42 AD23 I/O 66 AD0 I/O

19 BLAST O 43 AD22 I/O 67 CLKIN I

20 D/C O 44 AD21 I/O 68 RESET I

21 ADS O 45 AD20 I/O 69
STEST 
(TDO)

I

22 W/R O 46 AD19 I/O

23 DT/R O 47 AD18 I/O

1. Enable cells are active low.
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1.2. Use the Shift-IR state four times to read the least through most significant instruction 
bits into the instruction register (we do not care that the old instruction is being shifted 
out of the TDO pin).

1.3. Enter the Update-IR state to make the instruction take effect.

1.4. Exit the Instruction register.

2. Capture and shift the data onto the TDO pin:

2.1. Select the Data register scan state.

2.2. Capture the pin information into the n-stage Boundary-Scan register.

2.3. Enter and stay in the shift-DR state for n times while recording the TDO values as the 
inputs sampled. as the data sampled were shifting in the TDI was being read into the 
Boundary-Scan register. This could later be written the output pins.

2.4. Pass through the Exit1-DR and Update-DR to continue.

This example does not make use of the pause states. Those states would be more useful where we
do not control the clock directly. The pause states let the clock tick without affecting the shift
registers.

The old instruction was abcd in the example. It is known that the original value will be the ID code
since the example starts from the reset state. Other times it will represent the previous opcode. The
new instruction opcode is 00012 (sample/preload). All pins are captured into the serial Boundary-
Scan register and the values are output to the TDO pin.

The clock signal drawn at the top of the diagram is drawn as a stable symmetrical clock. This is
not in practice the most common case. Instead the clocking is usually done by a program writing to
a port bit. The TMS and TDI signals are written by software and then the software makes the clock
go high. The software typically will often lower the clock input quickly. The program can then
read the TDO pin.
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Figure 17-3.  JTAG Example
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Figure 17-4.  Timing diagram illustrating the loading of Instruction Register
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Figure 17-5.  Timing diagram illustrating the loading of Data Register

17.3.7 Boundary Scan Description Language Example

Boundary-Scan Description Language (BSDL) example 14-2 meets the de facto standard means of
describing essential features of ANSI/IEEE 1149.1-1993 compliant devices.
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Example 17-1.  Boundary Scan Description Language Example  (Sheet 1 of 4)

-- i960® Jx Processor BSDL Model

-- The following list describes all of the pins that are contained in the i960 Jx 
-- microprocessor.

entity JX_Processor is
   generic(PHYSICAL_PIN_MAP : string := "PGA_14x14");
port(TDI                : in bit;
     RDYRCVBAR          : in bit;
     Reserved1           : in bit;
     Reserved2          : in bit;
     Reserved3          : in bit;
     TRSTBAR            : in bit;
     TCK                : in bit;
     TMS                : in bit;
     HOLD               : in bit;
     XINTBARX           : in bit_vector(0 to 7);
     NMIBAR             : in bit;
     Reserved4          : in bit;
     Reserved5          : in bit;
     Reserved6          : in bit;
     Reserved7      : out bit;
     FAILBAR            : out bit;
     ALEBAR             : out bit;
     TDO                : out bit;
     WIDTH              : out bit_vector(1 downto 0);
     A32                : out bit_vector(0 to 1);
     Reserved8          : out bit;
     Reserved9          : out bit;
     Reserved10         : out bit;
     Reserved11           : out bit;
     BLASTBAR           : out bit;
     DCBAR              : out bit;
     ADSBAR             : out bit;
     WRBAR              : out bit;
     DTRBAR             : out bit;
     DENBAR             : out bit;
     HOLDA              : out bit;
     ALE                : out bit;
     LOCKONCEBAR        : inout bit;
     BSTAT              : out bit;
     BEBAR              : out bit_vector(0 to 3);
     Reserved12           : in bit;
     Reserved13           : in bit;
     Reserved14           : in bit;
     Reserved15           : inout bit_vector(7 downto 0);
     AD                 : inout bit_vector(31 downto 0);
     CLKIN              : in bit;
     Reserved16           : in bit;
     Reserved17           : in bit;
     Reserved18           : in bit;
     RESETBAR           : in bit;
     Reserved19           : in bit;
     STEST              : in bit;
     VCC                : linkage bit_vector(0 to 24);
     VSS                : linkage bit_vector(0 to 24);
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     AVCC               : linkage bit;
     NC                 : linkage bit_vector(1 to 3));
   use STD_1149_1_1990.all;
   use i960xl_a.all;
--This list describes the physical pin layout of all signals
   attribute PIN_MAP of JX_Processor : entity is PHYSICAL_PIN_MAP;
   constant PGA_14x14 : PIN_MAP_STRING :=        -- Define PinOut of PGA
        "TDI          : D12,"&
        "RDYRCVBAR    : F12,"&
        "TRSTBAR      : C12,"&
        "TCK          : B13,"&
        "TMS          : A14,"&
        "HOLD         : C09,"&
        "XINTBARX     : (C11, C10, A13, B12, B11, A12, B10, A11),"&
        "NMIBAR       : A10,"&
        "FAILBAR      : C06,"&
        "ALEBAR       : A03,"&
        "TDO          : B04,"&
        "WIDTH        : (B03, A02),"&
        "A32          : (C05, C04),"&
        "BLASTBAR     : C03,"&
        "DCBAR        : B02,"&
        "ADSBAR       : A01,"&
        "WRBAR        : B01,"&
        "DTRBAR       : D03,"&
        "DENBAR       : E03,"&
        "HOLDA        : C02,"&
        "ALE          : G03,"&
        "LOCKONCEBAR  : C01,"&
        "BSTAT        : F03,"&
        "BEBAR        : (H03, J03, L01, L02),"&
        "AD           : (K03, M01, M02, L03, N01, N02, P01, N03, M04, P02,"&
        "                M05, N04, P03, P04, M06, M07, M08, M09, P12, M10,"&
        "                P13, N12, M11, M12, N13, P14, L12, M13, N14, K12,"&
        "                L13, M14),"&
        "CLKIN        : H14,"&
        "RESETBAR     : E12,"&
        "STEST        : C13,"&
        "VCC          : (P11, P10, P09, P08, P07, P06, P05, L14, K14, K01," &
        "               J14, J01, H01, G14, G01, F14, F01, E14, E01, D14," &
        "               D01, A09, A08, A07, A06), " &
        "VSS          : (N11, N10, N09, N08, N07, N06, N05, K13," &
        "               K02, J13, J02, H13, H02, G13, G02, F13, F02, E13," &
        "               E02, D13, D02, B09, B08, B07, B06)," &
        "AVCC         : H12 ";
   attribute Tap_Scan_In    of  TDI   : signal is true;
   attribute Tap_Scan_Mode  of  TMS   : signal is true;
   attribute Tap_Scan_Out   of  TDO   : signal is true;
   attribute Tap_Scan_Reset of  TRSTBAR  : signal is true;
   attribute Tap_Scan_Clock of  TCK   : signal is (33.0e6, BOTH);
   attribute Instruction_Length of JX_Processor: entity is 4;
   attribute Instruction_Opcode of JX_Processor: entity is
      "BYPASS   (1111)," &
      "EXTEST   (0000)," &
      "SAMPLE   (0001)," &
      "IDCODE   (0010)," &
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      "RUNBIST  (0111)," &
      "Reserved (1100, 1011)";
attribute Instruction_Capture of JX_Processor: entity is "0001";
   -- there is no Instruction_Disable attribute for JX_Processor
   attribute Instruction_Private of JX_Processor: entity is "Reserved" ;
   --attribute Instruction_Usage of JX_Processor: entity is
   --   "RUNBIST (registers Runbist; "  &
   --   "result 0;"                  &
   --   "clock CLK in Run_Test_Idle;"&
   --   "length 524288)";
   -- attribute Idcode_Register of JX_Processor: entity is
   --    "0000"                  &  --version, A-step
   --    "0000001010100001"      &  --part number
   --    "00000001001"           &  --manufacturers identity
   --    "1";                       --required by the standard
   -- attribute Idcode_Register of JX_Processor: entity is
   --    "0010"                  &  --version, B-step
   --    "0000001010110001"      &  --part number B0primeprime
   --    "00000001001"           &  --manufacturers identity
   --    "1";                       --required by the standard
   attribute Idcode_Register of JX_Processor: entity is
      "0000"                  &  --version,
      "1000100000100000"      &  --part number ??
      "00000001001"           &  --manufacturers identity
      "1";                       --required by the standard
   attribute Register_Access of JX_Processor: entity is
        "Runbist[1]     (RUNBIST)";
--{*******************************************************************}
--{  The first cell, cell 0, is closest to TD0                        }
--{  BC_4:Input  BC_1: Output3, Bidirectional                         }
--{*******************************************************************}
attribute Boundary_Cells of JX_Processor: entity is "CBSC_1, BC_1";
   attribute Boundary_Length of JX_Processor: entity is 70;
   attribute Boundary_Register of JX_Processor: entity is
     "0 (BC_1, STEST, input, X)," &
     "1 (BC_1, RESETBAR, input, X)," &
     "2 (BC_1, CLKIN, input, X)," &
     "3 (CBSC_1, AD(0), bidir, X, 15, 1, Z)," &
     "4 (CBSC_1, AD(1), bidir, X, 15, 1, Z)," &
     "5 (CBSC_1, AD(2), bidir, X, 15, 1, Z)," &
     "6 (CBSC_1, AD(3), bidir, X, 15, 1, Z)," &
     "7 (CBSC_1, AD(4), bidir, X, 15, 1, Z)," &
     "8 (CBSC_1, AD(5), bidir, X, 15, 1, Z)," &
     "9 (CBSC_1, AD(6), bidir, X, 15, 1, Z)," &
     "10 (CBSC_1, AD(7), bidir, X, 15, 1, Z)," &
     "11 (CBSC_1, AD(8), bidir, X, 15, 1, Z)," &
     "12 (CBSC_1, AD(9), bidir, X, 15, 1, Z)," &
     "13 (CBSC_1, AD(10), bidir, X, 15, 1, Z)," &
     "14 (CBSC_1, AD(11), bidir, X, 15, 1, Z)," &
     "15 (BC_1, *, control, 1)," &
     "16 (CBSC_1, AD(12), bidir, X, 15, 1, Z)," &
     "17 (CBSC_1, AD(13), bidir, X, 15, 1, Z)," &
     "18 (CBSC_1, AD(14), bidir, X, 15, 1, Z)," &
     "19 (CBSC_1, AD(15), bidir, X, 15, 1, Z)," &
     "20 (CBSC_1, AD(16), bidir, X, 15, 1, Z)," &
     "21 (CBSC_1, AD(17), bidir, X, 15, 1, Z)," &
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     "22 (CBSC_1, AD(18), bidir, X, 15, 1, Z)," &
     "23 (CBSC_1, AD(19), bidir, X, 15, 1, Z)," &
     "24 (CBSC_1, AD(20), bidir, X, 15, 1, Z)," &
     "25 (CBSC_1, AD(21), bidir, X, 15, 1, Z)," &
     "26 (CBSC_1, AD(22), bidir, X, 15, 1, Z)," &
     "27 (CBSC_1, AD(23), bidir, X, 15, 1, Z)," &
     "28 (CBSC_1, AD(24), bidir, X, 15, 1, Z)," &
     "29 (CBSC_1, AD(25), bidir, X, 15, 1, Z)," &
     "30 (CBSC_1, AD(26), bidir, X, 15, 1, Z)," &
     "31 (CBSC_1, AD(27), bidir, X, 15, 1, Z)," &
     "32 (CBSC_1, AD(28), bidir, X, 15, 1, Z)," &
     "33 (CBSC_1, AD(29), bidir, X, 15, 1, Z)," &
     "34 (CBSC_1, AD(30), bidir, X, 15, 1, Z)," &
     "35 (CBSC_1, AD(31), bidir, X, 15, 1, Z)," &
     "36 (BC_1, BEBAR(3), output3, X, 51, 1, Z)," &
     "37 (BC_1, BEBAR(2), output3, X, 51, 1, Z)," &
     "38 (BC_1, BEBAR(1), output3, X, 51, 1, Z)," &
     "39 (BC_1, BEBAR(0), output3, X, 51, 1, Z)," &
     "40 (BC_1, BSTAT, output3, X, 52, 1, Z)," &
     "41 (CBSC_1, LOCKONCEBAR, bidir, X, 42, 1, Z)," &
     "42 (BC_1, *, control, 1)," &
     "43 (BC_1, ALE, output3, X, 51, 1, Z)," &
     "44 (BC_1, HOLDA, output3, X, 52, 1, Z)," &
     "45 (BC_1, DENBAR, output3, X, 51, 1, Z)," &
     "46 (BC_1, DTRBAR, output3, X, 51, 1, Z)," &
     "47 (BC_1, WRBAR, output3, X, 51, 1, Z)," &
     "48 (BC_1, ADSBAR, output3, X, 51, 1, Z)," &
     "49 (BC_1, DCBAR, output3, X, 51, 1, Z)," &
     "50 (BC_1, BLASTBAR, output3, X, 51, 1, Z)," &
     "51 (BC_1, *, control, 1)," &
     "52 (BC_1, *, control, 1)," &
     "53 (BC_1, A32(1), output3, X, 51, 1, Z)," &
     "54 (BC_1, A32(0), output3, X, 51, 1, Z)," &
     "55 (BC_1, WIDTH(0), output3, X, 51, 1, Z)," &
     "56 (BC_1, WIDTH(1), output3, X, 51, 1, Z)," &
     "57 (BC_1, ALEBAR, output3, X, 51, 1, Z)," &
     "58 (BC_1, FAILBAR, output3, X, 52, 1, Z)," &
     "59 (BC_1, NMIBAR, input, X)," &
     "60 (BC_1, XINTBARX(7), input, X)," &
     "61 (BC_1, XINTBARX(6), input, X)," &
     "62 (BC_1, XINTBARX(5), input, X)," &
     "63 (BC_1, XINTBARX(4), input, X)," &
     "64 (BC_1, XINTBARX(3), input, X)," &
     "65 (BC_1, XINTBARX(2), input, X)," &
     "66 (BC_1, XINTBARX(1), input, X)," &
     "67 (BC_1, XINTBARX(0), input, X)," &
     "68 (BC_1, HOLD, input, X)," &
     "69 (BC_1, RDYRCVBAR, input, X)";
     end JX_Processor;
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AAPPENDIX A
CONSIDERATIONS FOR

WRITING PORTABLE CODE

This appendix describes the aspects of the microprocessor that are implementation dependent. The
following information is intended as a guide for writing application code that is directly portable to
other i960® architecture implementations.

A.1 CORE ARCHITECTURE

All i960 microprocessor family products are based on the core architecture definition. An i960
processor can be thought of as consisting of two parts: the core architecture implementation and
implementation-specific features. The core architecture defines the following mechanisms and
structure:

• Programming environment: global and local registers, literals, processor state registers, data
types, memory addressing modes, etc.

• Implementation-independent instruction set.

• Procedure call mechanism.

• Mechanism for servicing interrupts and the interrupt and process priority structure.

• Mechanism for handling faults and the implementation-independent fault types and subtypes.

Implementation-specific features are one or all of:

• Additions to the instruction set beyond the instructions defined by the core architecture.

• Extensions to the register set beyond the global, local and processor-state registers that are
defined by the core architecture.

• On-chip program or data memory.

• Integrated peripherals that implement features not defined explicitly by the core architecture.

Code is directly portable (object code compatible) when it does not depend on implementation-
specific instructions, mechanisms or registers. The aspects of this microprocessor that are imple-
mentation dependent are described below. Those aspects not described below are part of the core
architecture. 

A.2 ADDRESS SPACE RESTRICTIONS

Address space properties that are implementation-specific to this microprocessor are described in
the subsections that follow.
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A.2.1 Reserved Memory

Addresses in the range FF00 0000H to FFFF FFFFH are reserved by the i960 architecture. Any
uses of reserved memory are implementation specific. The i960 Jx processor uses a section just
below the reserved address space for the initialization boot record; see section 11.3.1.1, “Initial-
ization Boot Record (IBR)” (pg. 11-12).The initialization boot record may not exist or may be
structured differently for other implementations of the i960 architecture. Code that relies on
structures in reserved memory is not portable to all i960 processor implementations. 

A.2.2 Internal Data RAM

Internal data RAM — an i960 Jx processor implementation-specific feature — is mapped to the
first 1 Kbyte of the processors’ address space (0000H – 03FFH). High performance, supervisor-
protected data space and the locations assigned for interrupt functions are special features that are
implemented in internal data RAM. Code that relies on these special features is not directly
portable to all i960 processor implementations.

A.2.3 Instruction Cache

The i960 architecture allows instructions to be cached on-chip in a non-transparent fashion. This
means that the cache may not detect modification of the program memory by loads, stores or
alteration by external agents. Each implementation of the i960 architecture that uses an integrated
instruction cache provides a mechanism to purge the cache or some other method that forces
consistency between external memory and internal cache. 

This feature is implementation-dependent. Application code that supports modification of the code
space must use this implementation-specific feature and, therefore, is not object code portable to
all i960 processor implementations.

The i960 JA processor has a 2-Kbyte instruction cache; the JF and JD have a 4-Kbyte instruction
cache. The instruction cache is purged using the system control (sysctl) or instruction cache
control (icctl) instruction, which may not be available on other i960 processors.

The instruction cache supports locking code into none, half, or all of the cache. The unlocked
portion functions as a direct-mapped cache. Refer to section 4.4, “INSTRUCTION CACHE” (pg.
4-4) for a description of cache configuration.
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A.2.4 Data Cache

The i960 JA processor has a 1-Kbyte data cache and the i960 JF and JD processors have a 2-Kbyte
data cache. With respect to data accesses on a region-by-region basis, external memory is
configured as either cacheable or non-cacheable. A bit in the memory region table entry defines
whether or not data accesses are cacheable. This makes it very easy to partition a system into non-
cacheable regions (for I/O or shared data in a multiprocessor system) and cacheable regions (local
system memory) with no external hardware logic. To maintain data cache coherency, the i960 Jx
processor implements a simple single processor coherency mechanism. Also, by software control,
the data cache can be globally enabled, globally disabled or globally invalidated. A data access is
either:

• Explicitly defined as cacheable or non-cacheable—through the memory region table

• Implicitly defined as non-cacheable—by the nature of the access; all atomic accesses (atmod,
atadd) are implicitly defined as non-cacheable data accesses

The data cache indirectly supports unaligned accesses. Microcode execution breaks unaligned
accesses into aligned accesses that are cacheable or non-cacheable according to the same rules as
aligned accesses. An unaligned access could be only partially in the data cache and be a
combination of hits and misses. The data cache supports both big-endian and little-endian data
types.

A.2.5 Data and Data Structure Alignment

The i960 architecture does not define how to handle loads and stores to non-aligned addresses.
Therefore, code that generates non-aligned addresses may not be compatible with all i960
processor implementations. The i960 Jx processor automatically handles non-aligned load and
store requests in microcode. See section 15.2.5, “Data Alignment” (pg. 15-22).

The address boundaries on which an operand begins can affect processor performance. Operands
that span more word boundaries than necessary suffer a cost in speed due to extra bus cycles. In
particular, an operand that spans a 16-byte (quad-word) boundary suffers a large cost in speed. 

Alignment of architecturally defined data structures in memory is implementation dependent. See
section 3.4, “ARCHITECTURE-DEFINED DATA STRUCTURES” (pg. 3-12). Code that relies on
specific alignment of data structures in memory is not portable to every i960 processor type.

Stack frames in the i960 architecture are aligned on (SALIGN*16)-byte boundaries, where
SALIGN is an implementation-specific parameter. For the i960 Jx processors, SALIGN = 1 so
stack frames are aligned on 16-byte boundaries. The low-order N bits of the Frame Pointer are
ignored and are always interpreted to be zero. The N parameter is defined by the following
expression: SALIGN*16 = 2N. Thus for the i960 Jx processors, N is 4. 
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A.3 RESERVED LOCATIONS IN REGISTERS AND DATA STRUCTURES

Some register and data structure fields are defined as reserved locations. A reserved field may be
used by future implementations of the i960 architecture. For portability and compatibility, code
should initialize reserved locations to zero. When an implementation uses a reserved location, the
implementation-specific feature is activated by a value of 1 in the reserved field. Setting the
reserved locations to 0 guarantees that the features are disabled. 

A.4 INSTRUCTION SET

The i960 architecture defines a comprehensive instruction set. Code that uses only the architec-
turally-defined instruction set is object-level portable to other implementations of the i960 archi-
tecture. Some implementations may favor a particular code ordering to optimize performance.
This special ordering, however, is never required by an implementation. The following
subsections describe implementation-dependent instruction set properties. 

A.4.1 Instruction Timing

An objective of the i960 architecture is to allow microarchitectural advances to translate directly
into increased performance. The architecture does not restrict parallel or out-of-order instruction
execution, nor does it define the time required to execute any instruction or function. Code that
depends on instruction execution times, therefore, is not portable to all i960 processor architecture
implementations.

A.4.2 Implementation-Specific Instructions

Most of the processor’s instruction set is defined by the core architecture. Several instructions are
specific to the i960 Jx processors. These instructions are either functional extensions to the
instruction set or instructions that control implementation-specific functions. CHAPTER 6,
INSTRUCTION SET REFERENCE denotes each implementation-specific instruction. These
instructions are:

Application code using implementation-specific instructions is not directly portable to the entire
i960 processor family. Attempted execution of an unimplemented instruction results in an
OPERATION.INVALID_OPCODE fault. 

• dcctl Data cache control • inten Global interrupt enable

• icctl Instruction cache control • halt Halt CPU

• intctl Interrupt control • sysctl System control

• intdis Global interrupt disable
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The i960 Jx processor introduces several new core instructions. These instructions may or may not
be supported on other i960 processors. The new core instructions include:

A.5 EXTENDED REGISTER SET

The i960 architecture defines a way to address an extended set of 32 registers in addition to the
16 global and 16 local registers. Some or all of these registers may be implemented on a specific
i960 processor. There are no extended registers implemented on the i960 Jx processors.

A.6 INITIALIZATION

The i960 architecture does not define an initialization mechanism. The way that an i960-based
product is initialized is implementation dependent. Code that accesses locations in initialization
data structures is not portable to other i960 processor implementations.

The i960 Jx processors use an initialization boot record (IBR). 

A.7 MEMORY CONFIGURATION

The i960 Jx processors employ Physical Memory Control (PMCON) and Logical Memory Control
(LMCON) registers to control bus width, byte order and the data cache. This capability is
analogous to the MCON register scheme employed by the 80960Cx. Memory configurations, like
the bus control unit, are implementation-specific.

A.8 INTERRUPTS 

The i960 architecture defines the interrupt servicing mechanism. This includes priority definition,
interrupt table structure and interrupt context switching that occurs when an interrupt is serviced.
The core architecture does not define the means for requesting interrupts (external pins, software,
etc.) or for posting interrupts (i.e., saving pending interrupts).

The method for requesting interrupts depends on the implementation. The i960 Jx processors have
an interrupt controller that manages nine external interrupt pins. The organization of these pins and
the registers of the interrupt controller are implementation specific. Code that configures the
interrupt controller is not directly portable to other i960 implementations. 

On the i960Jx processors, interrupts may also be requested in software with the sysctl instruction.
This instruction and the software request mechanism are implementation-specific. 

• ADD<cc> Conditional add • eshro Extended shift right ordinal

• bswap Byte swap • SEL<cc> Conditional select

• COMPARE Byte and short compares • SUB<cc> Conditional subtract



CONSIDERATIONS FOR WRITING PORTABLE CODE

A-6

Posting interrupts is also implementation-specific. Different implementations may optimize
interrupt posting according to interrupt type and interrupt controller configuration. A pending
priorities and pending interrupts field is provided in the interrupt table for interrupt posting.
However, the i960 Jx processors post hardware requested interrupts internally in the IPND register
instead. Code that requests interrupts by setting bits in the pending priorities and pending
interrupts field of the interrupt table is not portable. Also, application code that expects interrupts
to be posted in the interrupt table is not object-code portable to all i960-based products.

The i960 Jx processors do not store a resumption record for suspended instructions in the interrupt
or fault record. Portable programs must tolerate interrupt stack frames with and without these
resumption records.

A.9 OTHER i960 Jx PROCESSOR IMPLEMENTATION-SPECIFIC FEATURES 

Subsections that follow describe additional implementation-specific features of the i960
Jx processors. These features do not relate directly to application code portability.

A.9.1 Data Control Peripheral Units

The bus controller and interrupt controller are implementation-specific extensions to the core
architecture. Operation, setup and control of these units is not a part of the core architecture. Other
implementations of the i960 architecture are free to augment or modify such system integration
features.

A.9.2 Timers

The i960 Jx processor contains two 32-bit timers that are implementation-specific extensions to
the i960 architecture. Code involving operation, setup and control of the timers may or may not
directly portable to other i960 processors.

A.9.3 Fault Implementation

The architecture defines a subset of fault types and subtypes that apply to all implementations of
the architecture. Other fault types and subtypes may be defined by implementations to detect
errant conditions that relate to implementation-specific features. For example, the i960 Jx micro-
processors provide an OPERATION.UNALIGNED fault for detecting non-aligned memory
accesses. Future i960 processor implementations that generate this fault are expected to assign the
same fault type and subtype number to the fault. 
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A.10 BREAKPOINTS

Breakpoint registers are not defined in the i960 architecture. The i960 Jx processor implements
two instruction and two data breakpoint registers.

A.11 LOCK PIN 

The LOCK pin is not defined in the i960 architecture. Bus control logic and protocol associated
with this pin may vary among i960 processor implementations. For example, the 80960Jx will not
assert HOLDA in response to HOLD during LOCK’ed accesses. Earlier i960 processors will
relinquish the bus.

A.11.1 External System Requirements

External system requirements are not defined by the architecture. The external bus, RESET pin,
clock input, power and ground requirements, testability features and I/O characteristics are all
specific to the i960 microprocessor implementation.
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APPENDIX B
OPCODES AND EXECUTION TIMES

B.1 INSTRUCTION REFERENCE BY OPCODE

This section lists the instruction encoding for each i960® Jx processor instruction. Instructions are
grouped by instruction format and listed by opcode within each format. 

Table B-1.  Miscellaneous Instruction Encoding Bits

M3 M2 M1 S2 S1 T Description

REG Format

x x 0 x 0 — src1 is a global or local register

x x 1 x 0 — src1 is a literal

x x 0 x 1 — reserved

x x 1 x 1 — reserved

x 0 x 0 x — src2 is a global or local register

x 1 x 0 x — src2 is a literal

x 0 x 1 x — reserved

x 1 x 1 x — reserved

0 x x x x — src/dst is a global or local register

1 x x x x — src/dst is a literal when used as a source. M3 may not be 1 when 
src/dst is used as a destination only or is used both as a source 
and destination in an instruction (atmod, modify, extract, 
modpc).

COBR Format

— — 0 0 — x src1 src2 and dst are global or local registers

— — 1 0 — x src1 is a literal, src2 and dst are global or local registers

— — 0 1 — x reserved

— — 1 1 — x reserved
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Table B-2.  REG Format Instruction Encodings  (Sheet 1 of 4)
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31 .......... 24 23...19 18 ..14 13 12 11 10 ...7 6 5 4 ....... 0

58:0 notbit 1 0101 1000 dst src M3 M2 M1 0000 S2 S1 bitpos

58:1 and 1 0101 1000 dst src2 M3 M2 M1 0001 S2 S1 src1

58:2 andnot 1 0101 1000 dst src2 M3 M2 M1 0010 S2 S1 src1

58:3 setbit 1 0101 1000 dst src M3 M2 M1 0011 S2 S1 bitpos

58:4 notand 1 0101 1000 dst src2 M3 M2 M1 0100 S2 S1 src1

58:6 xor 1 0101 1000 dst src2 M3 M2 M1 0110 S2 S1 src1

58:7 or 1 0101 1000 dst src2 M3 M2 M1 0111 S2 S1 src1

58:8 nor 1 0101 1000 dst src2 M3 M2 M1 1000 S2 S1 src1

58:9 xnor 1 0101 1000 dst src2 M3 M2 M1 1001 S2 S1 src1

58:A not 1 0101 1000 dst M3 M2 M1 1010 S2 S1 src

58:B ornot 1 0101 1000 dst src2 M3 M2 M1 1011 S2 S1 src1

58:C clrbit 1 0101 1000 dst src M3 M2 M1 1100 S2 S1 bitpos

58:D notor 1 0101 1000 dst src2 M3 M2 M1 1101 S2 S1 src1

58:E nand 1 0101 1000 dst src2 M3 M2 M1 1110 S2 S1 src1

58:F alterbit 1 0101 1000 dst src M3 M2 M1 1111 S2 S1 bitpos

59:0 addo 1 0101 1001 dst src2 M3 M2 M1 0000 S2 S1 src1

59:1 addi 1 0101 1001 dst src2 M3 M2 M1 0001 S2 S1 src1

59:2 subo 1 0101 1001 dst src2 M3 M2 M1 0010 S2 S1 src1

59:3 subi 1 0101 1001 dst src2 M3 M2 M1 0011 S2 S1 src1

59:4 cmpob 1 0101 1001 src2 M3 M2 M1 0100 S2 S1 src1

59:5 cmpib 1 0101 1001 src2 M3 M2 M1 0101 S2 S1 src1

59:6 cmpos 1 0101 1001 src2 M3 M2  M1 0110 S2 S1 src1

59:7 cmpis 1 0101 1001 src2 M3 M2 M1 0111 S2 S1 src1

59:8 shro 1 0101 1001 dst src M3 M2 M1 1000 S2 S1 len

59:A shrdi 6 0101 1001 dst src M3 M2 M1 1010 S2 S1 len

59:B shri 1 0101 1001 dst src M3 M2 M1 1011 S2 S1 len

59:C shlo 1 0101 1001 dst src M3 M2 M1 1100 S2 S1 len

59:D rotate 1 0101 1001 dst src M3 M2 M1 1101 S2 S1 len

1. Execution time based on function performed by instruction.

2. When register cache is empty.
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59:E shli 1 0101 1001 dst src M3 M2 M1 1110 S2 S1 len

5A:0 cmpo 1 0101 1010 src2 M3 M2 M1 0000 S2 S1 src1

5A:1 cmpi 1 0101 1010 src2 M3 M2 M1 0001 S2 S1 src1

5A:2 concmpo 1 0101 1010 src2 M3 M2 M1 0010 S2 S1 src1

5A:3 concmpi 1 0101 1010 src2 M3 M2 M1 0011 S2 S1 src1

5A:4 cmpinco 1 0101 1010 dst src2 M3 M2 M1 0100 S2 S1 src1

5A:5 cmpinci 1 0101 1010 dst src2 M3 M2 M1 0101 S2 S1 src1

5A:6 cmpdeco 1 0101 1010 dst src2 M3 M2 M1 0110 S2 S1 src1

5A:7 cmpdeci 1 0101 1010 dst src2 M3 M2 M1 0111 S2 S1 src1

5A:C scanbyte 1 0101 1010 src2 M3 M2 M1 1100 S2 S1 src1

5A:D bswap 10 0101 1010 dst M3 M2 M1 1101 S2 S1 src1

5A:E chkbit 1 0101 1010 src M3 M2 M1 1110 S2 S1 bitpos

5B:0 addc 1 0101 1011 dst src2 M3 M2 M1 0000 S2 S1 src1

5B:2 subc 1 0101 1011 dst src2 M3 M2 M1 0010 S2 S1 src1

5B:4 intdis 4 0101 1011 M3 M2 M1 0100 S2 S1

5B:5 inten 4 0101 1011 M3 M2 M1 0101 S2 S1

5C:C mov 1 0101 1100 dst M3 M2 M1 1100 S2 S1 src

5D:8 eshro 11 0101 1101 dst src2 M3 M2 M1 1000 S2 S1 src1

5D:C movl 4 0101 1101 dst M3 M2 M1 1100 S2 S1 src

5E:C movt 5 0101 1110 dst M3 M2 M1 1100 S2 S1 src

5F:C movq 6 0101 1111 dst M3 M2 M1 1100 S2 S1 src

61:0 atmod 24 0110 0010 dst src2 M3 M2 M1 0000 S2 S1 src1

61:2 atadd 24 0110 0010 dst src2 M3 M2 M1 0010 S2 S1 src1

64:0 spanbit 6 0110 0100 dst M3 M2 M1 0000 S2 S1 src

64:1 scanbit 5 0110 0100 dst M3 M2 M1 0001 S2 S1 src

64:5 modac 10 0110 0100 mask src M3 M2 M1 0101 S2 S1 dst

65:0 modify 6 0110 0101 src/dst src M3 M2 M1 0000 S2 S1 mask

65:1 extract 7 0110 0101 src/dst len M3 M2 M1 0001 S2 S1 bitpos

65:4 modtc 10 0110 0101 mask src M3 M2 M1 0100 S2 S1 dst

65:5 modpc 17 0110 0101 src/dst mask M3 M2 M1 0101 S2 S1 src

65:8 intctl 12-16 0110 0101 dst M3 M2 M1 1000 S2 S1 src1
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65:9 sysctl 10-
1001

0110 0101 src/dst src2 M3 M2 M1 1001 S2 S1 src1

65:B icctl 10-
1001

0110 0101 src/dst src2 M3 M2 M1 1011 S2 S1 src1

65:C dcctl 10-
1001

0110 0101 src/dst src2 M3 M2 M1 1100 S2 S1 src1

65:D halt ∞ 0110 0101 M3 M2 M1 1101 S2 S1 src1

66:0 calls 30 0110 0110 M3 M2 M1 0000 S2 S1 src

66:B mark 8 0110 0110 M3 M2 M1 1011 S2 S1

66:C fmark 8 0110 0110 M3 M2 M1 1100 S2 S1

66:D flushreg 152 0110 0110 M3 M2 M1 1101 S2 S1

66:F syncf 4 0110 0110 M3 M2 M1 1111 S2 S1

67:0 emul 4-7 0110 0111 dst src2 M3 M2 M1 0000 S2 S1 src1

67:1 ediv ~64 0110 0111 dst src2 M3 M2 M1 0001 S2 S1 src1

70:1 mulo 2-4 0111 0000 dst src2 M3 M2 M1 0001 S2 S1 src1

70:8 remo 40 0111 0000 dst src2 M3 M2 M1 1000 S2 S1 src1

70:B divo 40 0111 0000 dst src2 M3 M2 M1 1011 S2 S1 src1

74:1 muli 2-4 0111 0100 dst src2 M3 M2 M1 0001 S2 S1 src1

74:8 remi 40 0111 0100 dst src2 M3 M2 M1 1000 S2 S1 src1

74:9 modi 40 0111 0100 dst src2 M3 M2 M1 1001 S2 S1 src1

74:B divi 40 0111 0100 dst src2 M3 M2 M1 1011 S2 S1 src1

78:0 addono 1 0111 1000 dst src2 M3 M2 M1 0000 S2 S1 src1

78:1 addino 1 0111 1000 dst src2 M3 M2 M1 0001 S2 S1 src1

78:2 subono 1 0111 1000 dst src2 M3 M2 M1 0010 S2 S1 src1

78:3 subino 1 0111 1000 dst src2 M3 M2 M1 0011 S2 S1 src1

78:4 selno 1 0111 1000 dst src2 M3 M2 M1 0100 S2 S1 src1

79:0 addog 1 0111 1001 dst src2 M3 M2 M1 0000 S2 S1 src1

79:1 addig 1 0111 1001 dst src2 M3 M2 M1 0001 S2 S1 src1

79:2 subog 1 0111 1001 dst src2 M3 M2 M1 0010 S2 S1 src1

79:3 subig 1 0111 1001 dst src2 M3 M2 M1 0011 S2 S1 src1

79:4 selg 1 0111 1001 dst src2 M3 M2 M1 0100 S2 S1 src1

7A:0 addoe 1 0111 1010 dst src2 M3 M2 M1 0000 S2 S1 src1
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1. Execution time based on function performed by instruction.

2. When register cache is empty.

Errata, 2/23/95. BWL. The
following opcode cycle counts
have been changed in Table B-
2:

67:0 emul       4-7
67:1 ediv       ~64
74:B divi       40

Also added a footnote to 66:D
flushreg's cycle count:

“When register cache is
empty.”



OPCODES AND EXECUTION TIMES

B-5

B

7A:1 addie 1 0111 1010 dst src2 M3 M2 M1 0001 S2 S1 src1

7A:2 suboe 1 0111 1010 dst src2 M3 M2 M1 0010 S2 S1 src1

7A:3 subie 1 0111 1010 dst src2 M3 M2 M1 0011 S2 S1 src1

7A:4 sele 1 0111 1010 dst src2 M3 M2 M1 0100 S2 S1 src1

7B:0 addoge 1 0111 1011 dst src2 M3 M2 M1 0000 S2 S1 src1

7B:1 addige 1 0111 1011 dst src2 M3 M2 M1 0001 S2 S1 src1

7B:2 suboge 1 0111 1011 dst src2 M3 M2 M1 0010 S2 S1 src1

7B:3 subige 1 0111 1011 dst src2 M3 M2 M1 0011 S2 S1 src1

7B:4 selge 1 0111 1011 dst src2 M3 M2 M1 0100 S2 S1 src1

7C:0 addol 1 0111 1100 dst src2 M3 M2 M1 0000 S2 S1 src1

7C:1 addil 1 0111 1100 dst src2 M3 M2 M1 0001 S2 S1 src1

7C:2 subol 1 0111 1100 dst src2 M3 M2 M1 0010 S2 S1 src1

7C:3 subil 1 0111 1100 dst src2 M3 M2 M1 0011 S2 S1 src1

7C:4 sell 1 0111 1100 dst src2 M3 M2 M1 0100 S2 S1 src1

7D:0 addone 1 0111 1101 dst src2 M3 M2 M1 0000 S2 S1 src1

7D:1 addine 1 0111 1101 dst src2 M3 M2 M1 0001 S2 S1 src1

7D:2 subone 1 0111 1101 dst src2 M3 M2 M1 0010 S2 S1 src1

7D:3 subine 1 0111 1101 dst src2 M3 M2 M1 0011 S2 S1 src1

7D:4 selne 1 0111 1101 dst src2 M3 M2 M1 0100 S2 S1 src1

7E:0 addole 1 0111 1110 dst src2 M3 M2 M1 0000 S2 S1 src1

7E:1 addile 1 0111 1110 dst src2 M3 M2 M1 0001 S2 S1 src1

7E:2 subole 1 0111 1110 dst src2 M3 M2 M1 0010 S2 S1 src1

7E:3 subile 1 0111 1110 dst src2 M3 M2 M1 0011 S2 S1 src1

7E:4 selle 1 0111 1110 dst src2 M3 M2 M1 0100 S2 S1 src1

7F:0 addoo 1 0111 1111 dst src2 M3 M2 M1 0000 S2 S1 src1

7F:1 addio 1 0111 1111 dst src2 M3 M2 M1 0001 S2 S1 src1

7F:2 suboo 1 0111 1111 dst src2 M3 M2 M1 0010 S2 S1 src1

7F:3 subio 1 0111 1111 dst src2 M3 M2 M1 0011 S2 S1 src1

7F:4 sello 1 0111 1111 dst src2 M3 M2 M1 0100 S2 S1 src1
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Table B-3.  COBR Format Instruction Encodings 
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20 testno 4 0010 0000 dst M1 T S2

21 testg 4 0010 0001 dst M1 T S2

22 teste 4 0010 0010 dst M1 T S2

23 testge 4 0010 0011 dst M1 T S2

24 testl 4 0010 0100 dst M1 T S2

25 testne 4 0010 0101 dst M1 T S2

26 testle 4 0010 0110 dst M1 T S2

27 testo 4 0010 0111 dst M1 T S2

30 bbc 2 + 11 0011 0000 bitpos src M1 targ T S2

31 cmpobg 2 + 1 0011 0001 src1 src2 M1 targ T S2

32 cmpobe 2 + 1 0011 0010 src1 src2 M1 targ T S2

33 cmpobge 2 + 1 0011 0011 src1 src2 M1 targ T S2

34 cmpobl 2 + 1 0011 0100 src1 src2 M1 targ T S2

35 cmpobne 2 + 1 0011 0101 src1 src2 M1 targ T S2

36 cmpoble 2 + 1 0011 0110 src1 src2 M1 targ T S2

37 bbs 2 + 1 0011 0111 bitpos src M1 targ T S2

38 cmpibno 2 + 1 0011 1000 src1 src2 M1 targ T S2

39 cmpibg 2 + 1 0011 1001 src1 src2 M1 targ T S2

3A cmpibe 2 + 1 0011 1010 src1 src2 M1 targ T S2

3B cmpibge 2 + 1 0011 1011 src1 src2 M1 targ T S2

3C cmpibl 2 + 1 0011 1100 src1 src2 M1 targ T S2

3D cmpibne 2 + 1 0011 1101 src1 src2 M1 targ T S2

3E cmpible 2 + 1 0011 1110 src1 src2 M1 targ T S2

3F cmpibo 2 + 1 0011 1111 src1 src2 M1 targ T S2

1. Indicates that it takes 2 cycles to execute the instruction plus an additional cycle to fetch the target 
instruction if the branch is taken.
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Table B-4.  CTRL Format Instruction Encodings
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08 b 1 + 11 0000 1000 targ T 0

09 call 7 0000 1001 targ T 0

0A ret 6 0000 1010 T 0

0B bal 1 + 1 0000 1011 targ T 0

10 bno 1 + 1 0001 0000 targ T 0

11 bg 1 + 1 0001 0001 targ T 0

12 be 1 + 1 0001 0010 targ T 0

13 bge 1 + 1 0001 0011 targ T 0

14 bl 1 + 1 0001 0100 targ T 0

15 bne 1 + 1 0001 0101 targ T 0

16 ble 1 + 1 0001 0110 targ T 0

17 bo 1 + 1 0001 0111 targ T 0

18 faultno 13 0001 1000 T 0

19 faultg 13 0001 1001 T 0

1A faulte 13 0001 1010 T 0

1B faultge 13 0001 1011 T 0

1C faultl 13 0001 1100 T 0

1D faultne 13 0001 1101 T 0

1E faultle 13 0001 1110 T 0

1F faulto 13 0001 1111 T 0

1. Indicates that it takes 1 cycle to execute the instruction plus an additional cycle 
to fetch the target instruction if the branch is taken.
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Table B-5.  MEM Format Instruction Encodings

31........ 24 23 .. .19 18....... 14 13 .......12 11 ..................................................0

Opcode src/dst ABASE Mode Offset

31........24 23 .. .19 18....... 14 13 .......12 . 11........10 9 .......7 6 ... 5 4........0

Opcode src/dst ABASE Mode Scale 00 Index

Displacement

Effective Address

efa =                 offset Opcode dst 0 0 offset

offset(reg) Opcode dst reg 1 0 offset

(reg) Opcode dst reg 0 1 0 0 00

disp + 8 (IP) Opcode dst 0 1 0 1 00
displacement

(reg1)[reg2 * scale] Opcode dst reg1 0 1 1 1 scale 00 reg2

disp Opcode dst 1 1 0 0 00
displacement

disp(reg) Opcode dst reg 1 1 0 1 00
displacement

disp[reg * scale] Opcode dst 1 1 1 0 scale 00 reg
displacement

disp(reg1)[reg2*scale] Opcode dst reg1 1 1 1 1 scale 00 reg2
displacement
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Opcode Mnemonic
Cycles to 
Execute

Opcode Mnemonic
Cycles to 
Execute

80 ldob See Note 1. 98 ldl See Note 1.

82 stob See Note 1. 9A stl See Note 1.

84 bx 4-7 A0 ldt See Note 1.

85 balx 5-8 A2 stt See Note 1.

86 callx 9-12 B0 ldq See Note 1.

88 ldos See Note 1. B2 stq See Note 1.

8A stos See Note 1. C0 ldib See Note 1.

8C lda See Note 1. C2 stib See Note 1.

90 ld See Note 1. C8 ldis See Note 1.

92 st See Note 1. CA stis See Note 1.

1. The number of cycles required to execute these instructions is based on the addressing mode used (see 
Table B-6).

Table B-6.   Addressing Mode Performance

Mode Assembler Syntax
Memory 
Format

Number of 
Instruction 

words

Cycles to 
Execute

Absolute Offset exp MEMA 1 1 

Absolute Displacement exp MEMB 2 2 

Register Indirect (reg) MEMB 1 1 

Register Indirect with Offset exp(reg) MEMA 1  1 

Register Indirect with 
Displacement

exp(reg) MEMB 2
 2 

Index with Displacement exp[reg*scale] MEMB 2  2 

Register Indirect with Index (reg)[reg*scale] MEMB 1  6 

Register Indirect with Index + 
Displacement

exp(reg)[reg*scale] MEMB 2
6 

Instruction Pointer with 
Displacement

exp(IP) MEMB 2
6 





C
REGISTER AND DATA 
STRUCTURES





C-1

C

APPENDIX C
REGISTER AND DATA STRUCTURES

This appendix is a compilation of all register and data structure figures described throughout the
manual. Following each figure is a reference that indicates the section that discusses the figure.

Fig. Register / Data Structure Where defined in the manual Page

C-1 Arithmetic Controls (AC) Register
Section 3.6.2, “Arithmetic Controls (AC) Register” (pg. 
3-17) C-2

C-2 Process Controls (PC) Register Section 3.6.3, “Process Controls (PC) Register” (pg. 3-20) C-3

C-3 Trace Controls (TC) Register Section 10.1.1, “Trace Controls (TC) Register” (pg. 10-2) C-4
C-4 System Procedure Table Section 7.5.1, “System Procedure Table” (pg. 7-16) C-5

C-5
Procedure Stack Structure and Local 
Registers

Section 7.1.1, “Local Registers and the Procedure Stack” 
(pg. 7-2) C-6

C-6 Previous Frame Pointer (PFP) Register (r0)
Section 7.2, “MODIFYING THE PFP REGISTER” (pg. 
7-13) C-7

C-7 Interrupt Table Section 8.4, “INTERRUPT TABLE” (pg. 8-3) C-8

C-8
Storage of an Interrupt Record on the 
Interrupt Stack

Section 8.5, “INTERRUPT STACK AND INTERRUPT 
RECORD” (pg. 8-5) C-9

C-9 Interrupt Control (ICON) Register
Section 13.3.4, “Interrupt Control Register (ICON)” (pg. 
13-12) C-10

C-10
Interrupt Mapping (IMAP0-IMAP2) 
Registers

Section 13.3.5, “Interrupt Mapping Registers (IMAP0-
IMAP2)” (pg. 13-14) C-11

C-11 Interrupt Pending (IPND) Register
Section 13.3.5.1, “Interrupt Mask (IMSK) and Interrupt 
Pending (IPND) Registers” (pg. 13-16) C-12

C-12 Interrupt Mask (IMSK) Registers
Section 13.3.5.1, “Interrupt Mask (IMSK) and Interrupt 
Pending (IPND) Registers” (pg. 13-16) C-13

C-13 Fault Table and Fault Table Entries Section 9.3, “FAULT TABLE” (pg. 9-4) C-14

C-14 Fault Record Section 9.5, “FAULT RECORD” (pg. 9-6) C-15
C-15 Breakpoint Control (BPCON) Register Section 10.2.7.4, “Breakpoint Control Register” (pg. 10-7) C-16

C-16 Data Address Breakpoint Register Format
Section 10.2.7.5, “Data Address Breakpoint Registers” (pg. 
10-9) C-16

C-17 Instruction Breakpoint Register Format
Section 10.2.7.6, “Instruction Breakpoint Registers” (pg. 
10-10) C-17

C-18
Initial Memory Image (IMI) and Process 
Control Block (PRCB)

Section 11.3.1, “Initial Memory Image (IMI)” (pg. 11-9) C-18

C-19 Control Table Section 11.3.3, “Control Table” (pg. 11-19) C-19

C-20 Process Control Block Configuration Words
Section 11.3.1.2, “Process Control Block (PRCB)” (pg. 
11-14) C-20

C-21 IEEE 1149.1 Device Identification Register
Section 11.4, “DEVICE IDENTIFICATION ON RESET” (pg. 
11-21) C-21

C-22 Bus Control Register (BCON) Section 12.4.1, “Bus Control (BCON) Register” (pg. 12-6) C-21

C-23 PMCON Register Bit Description Section 12.3.1, “Bus Width” (pg. 12-5) C-22

C-24 Logical Memory Template Starting Address 
Registers (LMADRO-1)

Section 12.6, “Programming the Logical Memory 
Attributes” (pg. 12-8) C-22

C-25 Logical Memory Template Mask Registers 
(LMMR0-1)

Section 12.6, “Programming the Logical Memory 
Attributes” (pg. 12-8) C-23

C-26
Default Logical Memory Configuration 
Register (DLMCON)

Section 12.6, “Programming the Logical Memory 
Attributes” (pg. 12-8) C-23
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C.1 Register and Data Structures

Figure C-1.  Arithmetic Controls (AC) Register

Section 3.6.2, “Arithmetic Controls (AC) Register” (pg. 3-17)

C-27 Timer Mode Register (TMR0, TMR1)
Section 14.1.1, “Timer Mode Register (TMR0, TMR1)” (pg. 
14-2) C-24

C-28 Timer Count Register (TCR0, TCR1)
Section 14.1.2, “Timer Count Register (TCR0, TCR1)” (pg. 
14-6) C-24

C-29 Timer Reload Register (TRR0, TRR1)
Section 14.1.3, “Timer Reload Register (TRR0, TRR1)” 
(pg. 14-7) C-25

Fig. Register / Data Structure Where defined in the manual Page

28 24 20 16 12 8 4 031

 

Condition Code Bits - AC.cc

Integer-Overflow Flag - AC.of
(0) No Overflow
(1) Overflow

Integer Overflow Mask Bit - AC.om
(0) No Mask
(1) Mask

No-Imprecise-Faults Bit- AC.nif
(0) Some Faults are Imprecise
(1) All Faults are Precise

Reserved
(Initialize to 0)

c
c
0

c
c
1

c
c
2

o
m

n
i
f

o
f

F_CA004A
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Figure C-2.  Process Controls (PC) Register

Section 3.6.3, “Process Controls (PC) Register” (pg. 3-20)
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Trace-Enable Bit - PC.te
(0) Globally disable trace faults
(1) Globally enable trace faults

Execution-Mode Flag - PC.em
(0) user mode
(1) supervisor mode

Trace-Fault-Pending - PC.tfp
(0) no fault pending
(1) fault pending

State Flag - PC.s
(0) executing
(1) interrupted

Priority Field - PC.p
(0-31) process priority

Reserved 

te
t

s
p pppp

4 3 2 1 0
f

m ep

(Do not modify) F_CR005A
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Figure C-3.  Trace Controls (TC) Register

Section 10.1.1, “Trace Controls (TC) Register” (pg. 10-2)

28 24 20 16

12 8 4 0

31

Trace Mode Bits
Instruction Trace Mode - TC.i
Branch Trace Mode - TC.b
Call Trace Mode -TC.c

Pre-Return Trace Mode - TC.p
Supervisor Trace Mode - TC.s
Mark Trace Mode - TC.mk

Return Trace Mode - TC.r

ibcrpsm
k

Reserved

Hardware Breakpoint Event Flags
Instruction-Address Breakpoint 0 - TC.i0f
Instruction-Address Breakpoint 1 - TC.i1f
Data-Address Breakpoint 0 - TC.d0f
Data-Address Breakpoint 1 - TC.d1f

i
0
f

i
1
f

d
0
f

d
1
f

F_CA 023A
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Figure C-4.  System Procedure Table

Section 7.5.1, “System Procedure Table” (pg. 7-16)

Reserved
(Initialize to 0)

000H

008H

00CH

010H

02CH

034H

030H

038H

03CH

438H
43CH

Entry Type:
00 - Local
10-Supervisor

Trace
Control
Bit

031

Procedure Entry

Tsupervisor stack pointer base

procedure entry 2

procedure entry 1

procedure entry 0

procedure entry 259

.

.

.

Preserved

address

031 12

F_CA013A
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Figure C-5.  Procedure Stack Structure and Local Registers

Section 7.1.1, “Local Registers and the Procedure Stack” (pg. 7-2)

register
save area

Procedure Stack

Previous Frame Pointer (PFP) 

Stack Pointer (SP)

Return Instruction Pointer (RIP)

user allocated stack

unused stack

stack growth
(toward higher addresses)

padding area

user allocated stack

Current Register Set

Previous Frame Pointer (PFP)

Stack Pointer (SP)

reserved for RIP

.

..

Frame Pointer (FP)

Previous 
Stack 

Frame

Current 
Stack
Frame.

..

.

..

.

..

g0

g15

r0

r1

r2

r15

r0

r1

r2

r15

F_CA010A
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Figure C-6.  Previous Frame Pointer (PFP) Register (r0)

Section 7.2, “MODIFYING THE PFP REGISTER” (pg. 7-13)

28 24 20 16 12 8 4 031

Return Status

a
4 p

r
t
2

r
t
1

r
t
0

Return-Type Field - PFP.rt

Pre-Return-Trace Flag - PFP.p

Previous Frame Pointer

Address-PFP.a

a
3
1

F_CA014A
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Figure C-7.  Interrupt Table

Section 8.4, “INTERRUPT TABLE” (pg. 8-3)

X  X

000H

004H

020H

024H (Vector 8)

028H (Vector 9)

02CH (Vector 10)

3D0H (Vector 243)
3D4H (Vector 244)

3E4H (Vector 248)

3E8H (Vector 249)

3F0H (Vector 251)
3F4H (Vector 252)

400H (Vector 255)

Entry Type:
00  Normal

10  Target in Cache
01  Reserved1

Pending Priorities

Pending Interrupts

Entry 8

Entry 9

 NMI Vector

Vector Entry

Instruction Pointer

...

Reserved (Initialize to 0)

Preserved

0

012

7831

...

Entry 252

Entry 255

...

Entry 243

Entry 10...

3E0H (Vector 247)

F_CA016A

11  Reserved1

1Vector entries with a reserved 
type have unpredictable behavior.
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Figure C-8.  Storage of an Interrupt Record on the Interrupt Stack

Section 8.5, “INTERRUPT STACK AND INTERRUPT RECORD” (pg. 8-5)

padding area

saved Arithmetic Controls Register
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current frame
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saved Process Controls Register

Interrupt Stack
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Current Stack
031 (local, supervisor, or interrupt stack)

vector number
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Interrupt 

Record

F_CA017A

optional data 

(not used by 80960Jx Implementation)
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Figure C-9.  Interrupt Control (ICON) Register

Section 13.3.4, “Interrupt Control Register (ICON)” (pg. 13-12)

Interrupt Mode - ICON.im
(00) Dedicated
(01) Expanded
(10) Mixed
(11) Reserved

Signal Detection Mode - ICON.sdm
 (0)  Level-low activated
 (1)  Falling-edge activated

Global Interrupts Enable - ICON.gie
 (0)  Enabled
 (1)  Disabled

Mask Operation - ICON.mo
(00) Move to r3, mask unchanged
(01) Move to r3 and clear for dedicated mode interrupts
(10) Move to r3 and clear for expanded mode interrupts
(11) Move to r3 and clear for dedicated and expanded

Vector Cache Enable - ICON.vce
 (0) Fetch from external memory
 (1) Fetch from internal RAM

Sampling Mode -ICON.sm
 (0)  debounce
 (1)  fast
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Interrupt Control Register (ICON)
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Figure C-10.  Interrupt Mapping (IMAP0-IMAP2) Registers

Section 13.3.5, “Interrupt Mapping Registers (IMAP0-IMAP2)” (pg. 13-14)
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Figure C-11.  Interrupt Pending (IPND) Register

Section 13.3.5.1, “Interrupt Mask (IMSK) and Interrupt Pending (IPND) Registers” (pg. 13-16)
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RESERVED
(INITIALIZE TO 0)

Figure C-12.  Interrupt Mask (IMSK) Registers

Section 13.3.5.1, “Interrupt Mask (IMSK) and Interrupt Pending (IPND) Registers” (pg. 13-16)
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Figure C-13.  Fault Table and Fault Table Entries

Section 9.3, “FAULT TABLE” (pg. 9-4)
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Type Fault Entry

Protection Fault Entry

Constraint Fault Entry

Arithmetic Fault Entry

Operation Fault Entry

Trace Fault Entry

Override/Parallel Fault Entry

Local-Call Entry

Fault-Handler Procedure Address

System-Call Entry

Fault-Handler Procedure Number

0000 027FH

n

n+4

n

n+4

012

0
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00H

08H

10H

18H

20H

28H

30H

38H

40H

48H

50H

FCH

Reserved (Initialize to 0)
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31

31

Fault Table

F_CA019A

012
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Figure C-14.  Fault Record

Section 9.5, “FAULT RECORD” (pg. 9-6)

031

PROCESS CONTROLS

ADDRESS OF FAULTING INSTRUCTION (n)

RESERVED

NFP-20

NFP-16

NFP-12

NFP-8

NFP-4

OTYPE OSUBTYPE OFLAGS 

ARITHMETIC CONTROLS

FTYPE (N) FSUBTYPE (N)FFLAGS (N)

OVERRIDE FAULT DATA

FAULT DATA

NFP - (n+1)*32

NFP - 24- n*32

NFP - 20- n*32

NFP - 12- n*32

NFP - 8- n*32

NFP - 4- n*32

NFP - 64

NFP - 52

NFP - 48

NFP - 44

NFP - 32

F_CR012A

FTYPE (1) FSUBTYPE (1)FFLAGS (1)

ADDRESS OF FAULTING INSTRUCTION (1)

28 24 20 16 12 8 4 031

RESUMPTION INFORMATION

FAULT DATA



REGISTER AND DATA STRUCTURES

C-16

Figure C-15.  Breakpoint Control (BPCON) Register

Section 10.2.7.4, “Breakpoint Control Register” (pg. 10-7)

Figure C-16.  Data Address Breakpoint Register Format

Section 10.2.7.5, “Data Address Breakpoint Registers” (pg. 10-9)
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DAB1

Reserved
(Initialize to 0)

Hardware Reset Value: 0000 0000H

Software Re-Init Value: Retains State
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Data Address

Hardware Reset Value: 0000 0000H

Software Re-init Value: 0000 0000H
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Figure C-17.  Instruction Breakpoint Register Format

Section 10.2.7.6, “Instruction Breakpoint Registers” (pg. 10-10)
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IBPx Mode

Instruction Address
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Hardware Reset Value: 0000 0000H

Software Re-init Value: 0000 0000H
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Figure C-18.  Initial Memory Image (IMI) and Process Control Block (PRCB)

Section 11.3.1, “Initial Memory Image (IMI)” (pg. 11-9)

FEFF FF30H

FEFF FF40H

FEFF FF44H

FEFF FF48H

FEFF FF5CH

Pmcon

First Instruction
Pointer

PRCB Pointer

6 Check Words
(For Bus Confidence

Self-Test)

Address

User Code:

Process Control Block (PRCB):

Fault Table Base Address

Control Table Base Address

AC Register Initial Image

Fault Configuration Word

Interrupt Table Base Address

System Procedure
Table Base Address

Reserved

Interrupt Stack Pointer

Instruction Cache
Configuration Word

Register Cache 

Control Table

Interrupt Table

System Procedure Table

Other Architecturally
Defined Data

Structures (Not 
Required As Part Of IMI)

Fixed Data Structures Relocatable Data Structures

Configuration Word

FEFF FF34H

FEFF FF38H

FEFF FF3CH

Byte 0
Pmcon
Byte 1
Pmcon
Byte 2
Pmcon
Byte 3

Init. Boot Record (IBR):
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Figure C-19.  Control Table

Section 11.3.3, “Control Table” (pg. 11-19)
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Interrupt Map 0 (IMAP0)

Interrupt Map 1 (IMAP1)

Bus Configuration Control (BCON)

Trace Controls (TC)

Interrupt Map 2 (IMAP2)

Interrupt Configuration (ICON)

Physical Memory Region 0:1 Configuration (PMCON0_1)

Reserved (Initialize to 0)

Physical Memory Region 2:3 Configuration (PMCON2_3)

Physical Memory Region 4:5 Configuration (PMCON4_5)

Physical Memory Region 6:7 Configuration (PMCON6_7)

Physical Memory Region 8:9 Configuration (PMCON8_9)

Physical Memory Region 10:11 Configuration (PMCON10_11

Physical Memory Region 12:13 Configuration (PMCON12_13)

Physical Memory Region 14:15 Configuration (PMCON14_15)

Reserved (Initialize to 0)

Reserved (Initialize to 0)

Reserved (Initialize to 0)

Reserved (Initialize to 0)

Reserved (Initialize to 0)

Reserved (Initialize to 0)

Reserved (Initialize to 0)

Reserved (Initialize to 0)

Reserved (Initialize to 0)

Reserved (Initialize to 0)

Reserved (Initialize to 0)

Reserved (Initialize to 0)

Reserved (Initialize to 0)
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Figure C-20.  Process Control Block Configuration Words

Section 11.3.1.2, “Process Control Block (PRCB)” (pg. 11-14)
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Integer-Overflow Flag - AC.of
(0) no overflow
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Integer Overflow Mask Bit - AC.om
(0) enable overflow faults
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(0) allow imprecise fault conditions
(1) prevent imprecise fault conditions

Register Cache Configuration Word
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(0) enable cache
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Fault Configuration Word
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Figure C-21.  IEEE 1149.1 Device Identification Register

Section 11.4, “DEVICE IDENTIFICATION ON RESET” (pg. 11-21)

Figure C-22.  Bus Control Register (BCON)

Section 12.4.1, “Bus Control (BCON) Register” (pg. 12-6)
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Reserved, 
write to zero

Configuration Entries in Control Table Valid (BCON.ctv)

P
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R
P

C
T
V

0 = PMCON entries not valid, default to PMCON14_15 setting.
1 = PMCON entries valid

Internal RAM Protection (BCON.irp)
0 = Internal data RAM not protected from user mode writes

Supervisor Internal RAM Protection (BCON.sirp)
0 = First 64-bytes not protected from supervisor mode writes
1 = First 64-bytes protected from supervisor mode writes

1 = Internal data RAM protected from user mode writes
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Figure C-23.  PMCON Register Bit Description

Section 12.3.1, “Bus Width” (pg. 12-5)

Figure C-24.  Logical Memory Template Starting Address Registers (LMADRO-1)

Section 12.6, “Programming the Logical Memory Attributes” (pg. 12-8)
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1 = Big endian
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Figure C-25.  Logical Memory Template Mask Registers (LMMR0-1)

Section 12.6, “Programming the Logical Memory Attributes” (pg. 12-8)

Figure C-26.  Default Logical Memory Configuration Register (DLMCON)

Section 12.6, “Programming the Logical Memory Attributes” (pg. 12-8)
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Errata 11/14/94 BWL.

Figure C-25, LMMR0-1 
Register Diagramis a 
duplicate of LMADR0-1 
register. Figure12-5 
(page 12-5) displays the 
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Reserved, 
write to zero
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B
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Big Endian Byte Order
0 = Little endian
1 = Big endian

Data Cache Enabled
0 = Data caching disabled
1 = Write-through caching enabled
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Figure C-27.  Timer Mode Register (TMR0, TMR1)

Section 14.1.1, “Timer Mode Register (TMR0, TMR1)” (pg. 14-2)

Figure C-28.  Timer Count Register (TCR0, TCR1)

Section 14.1.2, “Timer Count Register (TCR0, TCR1)” (pg. 14-6)
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4 0

Terminal Count Status - TMRx.tc
    (0) No Terminal Count 
    (1) Terminal Count 

Timer Enable - TMRx.enable 
    (0) Disable
    (1) Enable

Timer Auto Reload Enable - TMRx.reload
    (0) Auto Reload Disabled
    (1) Auto Reload Enabled

Timer Register Supervisor Write Control - TMRx.sup
    (0) Supervisor and User Mode Write Enabled
    (1) Supervisor Mode Only Write Enable

Timer Input Clock Selects - TMRx.csel1:0
    (00) 1:1 Timer Clock = Bus Clock
    (01) 2:1 Timer Clock = Bus Clock / 2
    (10) 4:1 Timer Clock = Bus Clock / 4

16 12 8

    (11) 8:1 Timer Clock = Bus Clock / 8 

Reserved
(Initialize to 0)

Timer Mode Register (TMR0, TMR1)

31
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Timer Count Register (TCR0, TCR1)

Timer Count Value - TCRx.d31:0
    D31:0
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Figure C-29.  Timer Reload Register (TRR0, TRR1)

Section 14.1.3, “Timer Reload Register (TRR0, TRR1)” (pg. 14-7)

Timer Reload Register (TRR0, TRR1)
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Timer Auto-Reload Value - TRRx.d31:0
    D31:0
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APPENDIX D
MACHINE-LEVEL INSTRUCTION FORMATS

This appendix describes the encoding format for instructions used by the i960 processors. Included
is a description of the four instruction formats and how the addressing modes relate to the these
formats. Refer also to APPENDIX B, OPCODES AND EXECUTION TIMES.

D.1 GENERAL INSTRUCTION FORMAT

The i960 architecture defines four basic instruction encoding formats (as shown in Figure D-1 on
page D-1): REG, COBR, CTRL and MEM. Most instruction uses one of these formats, which is
defined by the instruction’s opcode field. All instructions are one word long and all begin on word
boundaries. MEM format instructions are encoded in one of two sub-formats: MEMA or MEMB.
MEMB permits an optional second word to hold a displacement value. The following sections
describe each format’s instruction word fields.

Figure D-1.  Instruction Formats
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OPTIONAL DISPLACEMENT
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(8 bits) (22 bits)
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(8 bits) (5 bits) (5 bits) (3 bits) (5 bits)
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OPCODE The opcode of the instruction. Opcode encodings are defined in section 6.1.8,
“Opcode and Instruction Format” (pg. 6-6).

SRC 1 An input to the instruction. Specifies a value or address. In one case in the
COBR format, this field is used to specify a register in which a result is
stored.

SRC 2 An input to the instruction. Specifies a value or address.

SRC/DST Depending on the specific instruction, this can be (1) an input value or
address, (2) the register where the result is stored, or (3) both of the above.

ABASE A register. The register’s value is used in computing a memory address.

INDEX A register. The register’s value is used in computing a memory address.

DISPLACEMENT A signed two’s complement number.

OFFSET An unsigned positive number.

OPTIONAL a signed two’s complement number in case of 2-word MEMB format.
displacement

MODE A specification of how a memory address for an operand is computed, and for
MEMB specifies whether the instruction contains a second word to be used
as a displacement.

SCALE A specification of how a register’s contents are multiplied for certain
addressing modes (i.e., for indexing).

M1, M2, M3 These fields further define the meaning of the SRC 1, SRC 2, and src/dest
fields respectively as shown in Table D-1.

When a particular instruction is defined as not using a particular field, the field is ignored. 

D.2 REG FORMAT

REG format is used for operations performed on data contained in registers. Most of the i960
processor family’s instructions use this format.

The opcode for the REG instructions is 12 bits long (three hexadecimal digits) and is split between
bits 7 through 10 and bits 24 through 31. For example, the addi opcode is 591H. Here, 59H is
contained in bits 24 through 31; 1H is contained in bits 7 through 10.

src1 and src2 fields specify the instruction’s source operands. Operands can be global or local
registers or literals. Mode bits (M1 for src1 and M2 for src2) and the instruction type determine
what an operand specifies. Table D-1 shows this relationship:
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The src/dst field can specify a source operand, a destination operand or both, depending on the
instruction. Here again, mode bit M3 determines how this field is used. If M3 is clear, the src/dst
operand is a global or local register that is encoded as shown in Table D-2. If M3 is set, the src/dst
operand can be used as a source-only operand that is a literal. 

When a literal is specified, it is always an unsigned 5-bit value that is zero-extended to a 32-bit
value and used as the operand. When the instruction defines an operand to be larger than 32 bits,
values specified by literals are zero-extended to the operand size. 

D.3 COBR FORMAT

The COBR format is used primarily for compare-and-branch instructions. The test-if instructions
also use the COBR format. The COBR opcode field is eight bits (two hexadecimal digits). 

The src1 and src2 fields specify source operands for the instruction. The src1 field can specify
either a global or local register or a literal as determined by mode bit m1. The src2 field can only
specify a global or local register. Table D-3 shows the M1, src1 relationship:

Table D-1.  Encoding of src1 and src2 in REG Format

M1 or M2
Src1 or Src2 

Operand Value
Register Number Literal Value

0
00000 ... 01111 r0 ... r15 NA

10000 ... 11111 g0 ... g15 NA

1 00000 ... 11111 NA 0 ... 31

Table D-2.  Encoding of src/dst in REG Format

M3 SRC/DST SRC Only DST Only

0
g0 ... g15 
r0 ... r15

g0 ... g15 
r0 ... r15

g0 ... g15 
r0 ... r15

1 Reserved Literal Reserved

Table D-3.  Encoding of src1 in COBR Format

M1 src1

0

1

g0 ... g15
r0 ... r15
Literal
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The displacement field contains a signed two’s complement number that specifies a word
displacement. The processor uses this value to compute the address of a target instruction to which
the processor goes as a result of a comparison. The displacement field’s value can range from -210

to 210 -1. To determine the target instruction’s IP, the processor converts the displacement value to
a byte displacement (i.e., multiplies the value by 4). It then adds the resulting byte displacement to
the IP of the current instruction.

For the test<cc> instructions, only the src1 field is used. Here, this field specifies a destination
global or local register; M1 is ignored.

D.4 CTRL FORMAT

The CTRL format is used for instructions that branch to a new IP, including the branch,
branch<cc>, bal and call instructions; ret also uses this format. The CTRL opcode field is eight
bits (two hexadecimal digits).

A branch target address is specified with the displacement field in the same manner as COBR
format instructions. The displacement field specifies a word displacement as a signed, two’s
complement number in the range -221 to 221-1. The processor ignores the ret instruction’s
displacement field.

D.5 MEM FORMAT

The MEM format is used for instructions that require a memory address to be computed. These
instructions include the load, store and lda instructions. Also, the extended versions of the branch,
branch-and-link and call instructions (bx, balx and callx) use this format.

The two MEM-format encodings are MEMA and MEMB. MEMB can optionally add a 32-bit
displacement (contained in a second word) to the instruction. Bit 12 of the instruction’s first word
determines whether MEMA (clear) or MEMB (set) is used.

The opcode field is eight bits long for either encoding. The src/dst field specifies a global or local
register. For load instructions, src/dst specifies the destination register for a word loaded into the
processor from memory or, for operands larger than one word, the first of successive destination
registers. For store instructions, this field specifies the register or group of registers that contain
the source operand to be stored in memory.
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The mode field determines the address mode used for the instruction. Table D-4 summarizes the
addressing modes for the two MEM-format encodings. Fields used in these addressing modes are
described in the following sections.

D.5.1 MEMA Format Addressing

The MEMA format provides two addressing modes:

• absolute offset

• register indirect with offset

The offset field specifies an unsigned byte offset from 0 to 4096. The abase field specifies a global
or local register that contains an address in memory.

For the absolute-offset addressing mode (mode = 00), the processor interprets the offset field as an
offset from byte 0 of the current process address space; the abase field is ignored. Using this
addressing mode along with the lda instruction allows a constant in the range 0 to 4096 to be
loaded into a register.

Table D-4.  Addressing Modes for MEM Format Instructions

Format Mode Addressing Mode Address Computation
# of 
Instr 

Words

MEMA
00 Absolute Offset offset 1

10 Register Indirect with Offset (abase) + offset 1

MEMB

0100 Register Indirect (abase) 1

0101 IP with Displacement (IP) + displacement + 8 2

0110 Reserved reserved NA

0111 Register Indirect with Index (abase) + (index) * 2scale 1

1100 Absolute Displacement displacement 2

1101
Register Indirect w/ 
Displacement

(abase) + displacement 2

1110 Index with Displacement (index) * 2scale + displacement 2

1111
Register Indirect with Index 
and Displacement

(abase) + (index) * 2scale + displacement 2

NOTE:
In these address computations, a field in parentheses, e.g., (abase), indicates that the value in the 
specified register is used in the computation. 
Usage of a reserved encoding causes generation of an OPERATION.INVALID_OPCODE fault.
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For the register-indirect-with-offset addressing mode (mode = 10), offset field value is added to the
address in the abase register. Setting the offset value to zero creates a register indirect addressing
mode; however, this operation can generally be carried out faster by using the MEMB version of
this addressing mode.

D.5.2 MEMB Format Addressing

The MEMB format provides the following seven addressing modes:

The abase and index fields specify local or global registers, the contents of which are used in
address computation. When the index field is used in an addressing mode, the processor automati-
cally scales the index register value by the amount specified in the scale field. Table D-5 gives the
encoding of the scale field. The optional displacement field is contained in the word following the
instruction word. The displacement is a 32-bit signed two’s complement value.

For the IP with displacement mode, the value of the displacement field plus eight is added to the
address of the current instruction.

• absolute displacement • register indirect

• register indirect with displacement • register indirect with displacement

• register indirect with index and displacement • index with displacement

• IP with displacement

Table D-5.  Encoding of Scale Field

Scale Scale Factor (Multiplier)

000 1

001 2

010 4

011 8

100 16

101 to 111 Reserved

Note: 
Usage of a reserved encoding causes an unpredictable result.
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Address Space An array of bytes used to store program code, data, stacks and system
data structures required to execute a program. Address space is linear –
also called flat – and byte addressable, with addresses running contigu-
ously from 0 to 232 - 1. It can be mapped to read-write memory, read-
only memory and memory-mapped I/O. i960 architecture does not define
a dedicated, addressable I/O space.

Address A 32-bit value in the range 0 to FFFF FFFFH used to reference in
memory a single byte, half-word (2 bytes), word (4 bytes), double-word
(8 bytes), triple-word (12 bytes) or quad-word (16 bytes). Choice
depends on the instruction used.

Arithmetic Controls 
(AC) Register

A 32-bit register that contains flags and masks used in controlling the
various arithmetic and comparison operations that the processor
performs. Flags and masks contained in this register include the
condition code flags, integer-overflow flag and mask bit and the no-
imprecise-faults (NIF) bit. All unused bits in this register are reserved
and must be set to 0.

Asynchronous 
Faults

Faults that occur with no direct relationship to a particular instruction in
the instruction stream. When an asynchronous fault occurs, the address
of the faulting instruction in the fault record and the saved IP are
undefined. i960 core architecture does not define any fault types that are
asynchronous.

Big Endian The controller reads or writes a data word’s least-significant byte to the
bus’ eight most-significant data lines (D31:24). Big endian systems store
the least-significant byte at the highest byte address in memory. So, if a
big endian ordered word is stored at address 600, the least-significant
byte is stored at address 603 and the most-significant byte at address 600.
Compare with little endian.

Condition Code 
Flags

AC register bits 0, 1 and 2. The condition code flags indicate the results
of certain instructions – usually compare instructions. Other instructions,
such as conditional branch instructions, examine these flags and perform
functions according to their state. Once the processor sets the condition
code flags, they remain unchanged until the processor executes another
instruction that uses these flags to store results.

Execution Mode 
Flag

PC register bit 1. This flag determines whether the processor is operating
in user mode (0) or supervisor mode (1).
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Fault Call An implicit call to a fault handling procedure. The processor performs
fault calls automatically without any intervention from software. It gets
pointers to fault handling procedures from the fault table.

Fault Table An architecture-defined data structure that contains pointers to fault
handling procedures. Each fault table entry is associated with a particular
fault type. When the processor generates a fault, it uses the fault table to
select the proper fault handling procedure for the type of fault condition
detected.

Fault An event that the processor generates to indicate that, while executing
the program, a condition arose which could cause the processor to go
down a wrong and possibly disastrous path. One example of a fault
condition is a divisor operand of zero in a divide operation; another
example is an instruction with an invalid opcode.

FP See Frame Pointer.

Frame Pointer (FP) The address of the first byte in the current (topmost) stack frame of the
procedure stack. The FP is contained in global register g15.

Frame See Stack Frame.

Global Registers A set of 16 general-purpose registers (g0 through g15) whose contents
are preserved across procedure boundaries. Global registers are used for
general storage of data and addresses and for passing parameters
between procedures.

Hard Reset The assertion of the RESET# pin; equivalent to powerup.

IBR See Initialization Boot Record. 

IMI See Initial Memory Image. 

Imprecise Faults Faults that are allowed to be generated out-of-order from where they
occur in the instruction stream. When an imprecise fault is generated, the
processor indicates the address of the faulting instruction, but it does not
guarantee that software will be able to recover from the fault and resume
execution of the program with no break in the program's control flow.
The NIF bit in the arithmetic controls register determines whether all
faults must be precise (1) or some faults are allowed to be imprecise (0).

Initialization Boot 
Record (IBR)

One of three IMI components, IBR is the primary data structure required
to initialize the i960 CA microprocessor. IBR is 12-word structure which
must be located at address FFFF FF00H.
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Image (IMI)
Comprises the minimum set of data structures the processor needs to
initialize its system. Performs three functions for the processor: 1)
provides initial configuration information for the core and integrated
peripherals; 2) provides pointers to system data structures and the first
instruction to be executed after processor initialization; 3) provides
checksum words that the processor uses in self-test at startup. See also
IBR, PRCB and System Data Structures.

Instruction Cache A memory array used for temporary storage of instructions fetched from
main memory. Its purpose is to streamline instruction execution by
reducing the number of instruction fetches required to execute a
program.

Instruction Pointer 
(IP)

A 32-bit register that contains the address (in the address space) of the
instruction currently being executed. Since instructions are required to be
aligned on word boundaries in memory, the IP's two least-significant bits
are always zero.

Integer Overflow 
Flag

AC register bit 8. When integer overflow faults are masked, the
processor sets the integer overflow flag whenever integer overflow
occurs to indicate that the fault condition has occurred even though the
fault has been masked. If the fault is not masked, the fault is allowed to
occur and the flag is not set.

Integer Overflow 
Mask Bit

AC register bit 12. This bit masks the integer overflow fault.

Interrupt Call An implicit call to a interrupt handling procedure. The processor
performs interrupt calls automatically without any intervention from
software. It gets vectors (pointers) to interrupt handling procedures from
the interrupt table.

Interrupt Stack Stack the processor uses when it executes interrupt handling procedures.

Interrupt Table An architecturally-defined data structure that contains vectors to
interrupt handling procedures and fields for storing pending interrupts.
When the processor receives an interrupt, it uses the vector number that
accompanies the interrupt to locate an interrupt vector in the interrupt
table. The interrupt table's pending interrupt fields contain bits that
indicate priorities and vector numbers of interrupts waiting to be
serviced.

Interrupt Vector A pointer to an interrupt handling procedure. In the i960 architecture,
interrupts vectors are stored in the interrupt table.

Interrupt An event that causes program execution to be suspended temporarily to
allow the processor to handle a more urgent chore.

Leaf Procedure Leaf procedures call no other procedures. They are called “leaf
procedures” because they reside at the “leaves” of the call tree.
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Literals A set of 32 ordinal values ranging from 0 to 31 (5 bits) that can be used
as operands in certain instructions.

Little Endian The controller reads or writes a data word’s least-significant byte to the
bus’ eight least-significant data lines (D7:0). Little endian systems store
a word’s least-significant byte at the lowest byte address in memory. For
example, if a little endian ordered word is stored at address 600, the
least-significant byte is stored at address 600 and the most-significant
byte at address 603. Compare with big endian.

Local Call A procedure call that does not require a switch in the current execution
mode or a switch to another stack. Local calls can be made explicitly
through the call, callx and calls instructions and implicitly through the
fault call mechanism.

Local Registers A set of 16 general-purpose data registers (r0 through r15) whose
contents are associated with the procedure currently being executed.
Local registers hold the local variables for a procedure. Each time a
procedure is called, the processor automatically allocates a new set of
local registers for that procedure and saves the local registers for the
calling procedure.

Memory Array to which address space is mapped. Memory can be read-write,
read-only or a combination of the two. A memory address is generally
synonymous with an address in the address space.

“Natural” Fill 
Policy

The processor fetches only the amount of data that is requested by a load
(i.e., a word, long word, etc.) on a data cache miss. Exceptions are byte
and short word accesses, which are always promoted to words.

NIF See No Imprecise Faults Bit.

NMI See Non Maskable Interrupt. 

No Imprecise Faults 
(NIF) Bit

AC register bit 15. This flag determines whether or not imprecise faults
are allowed to occur. If set, all faults are required to be precise; if clear,
certain faults can be imprecise.

Non Maskable 
Interrupt (NMI)

Provides an interrupt that cannot be masked and has a higher priority
than priority-31 interrupts and priority-31 process priority. The core
services NMI requests immediately.

Parallel Faults  A condition which occurs when multiple execution units, executing
instructions in parallel, report multiple faults simultaneously. Setting the
NIF bit prohibits execution conditions which could cause parallel faults.
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the processor receives an interrupt, it compares the interrupt's priority
with the priority of the current processing task. If the priority of the
interrupt is equal to or less than that of the current task, the processor
saves the interrupt's priority and vector number in the pending interrupt
fields of the interrupt table, then continues work on the current
processing task.

PFP See Previous Frame Pointer.

Pointer An address in the address space (or memory). The term pointer generally
refers to the first byte of a procedure or data structure or a specific byte
location in a stack.

PRCB See Process Control Block.

Precise Faults Faults generated in the order in which they occur in the instruction
stream and with sufficient fault information to allow software to recover
from the faults without altering program's control flow. The AC register
NIF bit and the syncf instruction allow software to force all faults to be
precise.

Previous Frame 
Pointer (PFP)

The address of the previous stack frame's first byte. It is contained in bits
4 through 31 of local register r0. 

Priority Field PC register bits 16 through 20. This field determines processor priority
(from 0 to 31). When the processor is in the executing state, it sets its
priority according to this value. It also uses this field to determine
whether to service an interrupt immediately or to save the interrupt for
later service.

Priority A value from 0 to 31 that indicates the priority of a program or interrupt;
highest priority is 31. The processor stores the priority of the task
(program or interrupt) that it is currently working on in the priority field
of the PC register. See also NMI.

Process Control 
Block (PRCB)

One of three (IMI) components, PRCB contains base addresses for
system data structures and initial configuration information for the core
and integrated peripherals. 

Process Controls 
(PC) Register

A 32-bit register that contains miscellaneous pieces of information used
to control processor activity and show current processor state. Flags and
fields in this register include the trace enable bit, execution mode flag,
trace fault pending flag, state flag, priority field and internal state field.
All unused bits in this register are reserved and must be set to 0.
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Register Score-
boarding

Internal flags that indicate a particular register or group of registers is
being used in an operation. This feature enables the processor to execute
some instructions in parallel and out-of-order. When the processor
begins executing an instruction, it sets the scoreboard flag for the
destination register in use by that instruction. If the instructions that
follow do not use scoreboarded registers, the processor is able to execute
one or more of those instructions concurrently with the first instruction.

Return Instruction 
Pointer (RIP)

The address of the instruction following a call or branch-and-link
instruction that the processor is to execute after returning from the called
procedure. The RIP is contained in local register r2. When the processor
executes a procedure call, it sets the RIP to the address of the instruction
immediately following the procedure call instruction.

Return Type Field Bits 0, 1 and 2 of local register r0. When a procedure call is made using
the integrated call and return mechanism, this field indicates the call
type: local, supervisor, interrupt or fault. The processor uses this
information to select the proper return mechanism when returning from
the called procedure.

RIP See Return Instruction Pointer.

Soft Reset Re-running of the Reset microcode without physically asserting the
RESET# pin or removing power from the CPU.

SP See Stack Pointer.

Stack Frame A block of bytes on a stack used to store local variables for a specific
procedure. Another term for a stack frame is an activation record. Each
procedure that the processor calls has its own stack frame associated
with it. A stack frame is always aligned on a 64-byte boundary. The first
64 bytes in a stack frame are reserved for storage of the local registers
associated with the procedure. The frame pointer (FP) and stack pointer
(SP) for a particular frame indicate location and boundaries of a stack
frame within a stack.

Stack Pointer (SP) The address of the last byte in the current (topmost) frame of the
procedure stack. The SP is contained in local register r1.

Stack A contiguous array of bytes in the address space that grows from low
addresses to high addresses. It consists of contiguous frames, one frame
for each active procedure. i960 architecture defines three stacks: local,
supervisor and interrupt.

State Flag PC register bit 10. This flag indicates to software that the processor is
currently executing a program (0) or servicing an interrupt (1).

State The type of task that the processor is currently working on: a program or
an interrupt handling procedure. The processor sets the PC register state
flag to indicate its current state.
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Registers
A set of four architecturally-defined registers – each 32-bits in length –
that contain status and control information used in controlling program
flow. These registers include the instruction pointer (IP), AC register, PC
register and TC register.

Supervisor Call A system call (made with the calls instruction) where the entry type of
the called procedure is 102. If the processor is in user mode when a
supervisor call is made, it switches to the supervisor stack and to
supervisor mode.

Supervisor Mode One of two execution modes – user and supervisor – that the processor
can be in. The processor uses the supervisor stack when in supervisor
mode. Also, while in supervisor mode, software is allowed to execute the
modpc instruction and any other implementation-defined instructions
that are designed to be supervisor mode instructions.

Supervisor Stack 
Pointer

The address of the first byte of the supervisor stack. The supervisor stack
pointer is contained in bytes 12 through 15 of the system procedure table
and the trace table.

Supervisor Stack The procedure stack that the processor uses when in supervisor mode.

System Call An explicit procedure call made with the calls instruction. The two types
of system calls are a system-local call and system-supervisor call. On a
system call, the processor gets a pointer to the system procedure through
the system procedure table.

System Data 
Structures

One of three IMI components. The following system data structures
contain values the processor requires for initialization: PRCB, IBR,
system procedure table, control table, interrupt table.

System Procedure 
Table

An architecturally-defined data structure that contains pointers to system
procedures and (optionally) to fault handling procedures. It also contains
the supervisor stack pointer and the trace control flag.

Trace Table An architecturally-defined data structure that contains pointers to trace-
fault-handling procedures. The trace table has the same structure as the
system procedure table.

Trace Control Bit Bit 0 of byte 12 of the system procedure table. This bit specifies the new
value of the trace enable bit when a supervisor call causes a switch from
user mode to supervisor mode. Setting this bit to 1 enables tracing;
setting it to 0 disables tracing.

Trace Controls 
(TC) Register

A 32-bit register that controls processor tracing facilities. This register
contains one event bit and one mode bit for each trace fault subtype (i.e.,
instruction, branch, call, return, prereturn, supervisor and breakpoint).
The mode bits enable the various tracing modes; the event flags indicate
that a particular type of trace event has been detected. All the unused bits
in this register are reserved and must be set to 0.
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Trace Enable Bit PC register bit 0. This bit determines whether trace faults are to be
generated (1) or not generated (0).

Trace Fault 
Pending Flag 

PC register bit 10. This flag indicates that a trace event has been detected
(1) but not yet generated. Whenever the processor detects a trace fault at
the same time that it detects a non-trace fault, it sets the trace fault
pending flag then calls the fault handling procedure for the non-trace
fault. On return from the fault procedure for the non-trace fault, the
processor checks the trace fault pending flag. If set, it generates the trace
fault and handles it.

Tracing The ability of the processor to detect execution of certain instruction
types, such as branch, call and return. When tracing is enabled, the
processor generates a fault whenever it detects a trace event. A trace fault
handler can then be designed to call a debug monitor to provide
information on the trace event and its location in the instruction stream.

User Mode One of two execution modes – user and supervisor – that the processor
can be in. When the processor is in user mode, it uses the local stack and
is not allowed to use the modpc instruction or any other implementation-
defined instruction that is designed to be used only in supervisor mode.

Vector Number The number of an entry in the interrupt table where an interrupt vector is
stored. The vector number also indicates the priority of the interrupt.

Vector See Interrupt Vector.
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absolute

displacement 2-7
offset 2-7

AC register, see Arithmetic Controls (AC) register
access fault model 3-7
access faults 3-7
access types 3-6

restrictions 3-6
ADD 6-8

add
conditional instructions 6-8
integer instruction 6-12
ordinal instruction 6-12
ordinal with carry instruction 6-11

addc 6-11
addi 6-12
addie 6-8
addig 6-8
addige 6-8
addil 6-8
addile 6-8
addine 6-8
addino 6-8
addio 6-8
addo 6-12
addoe 6-8
addog 6-8
addoge 6-8
addol 6-8
addole 6-8
addone 6-8
addono 6-8
addoo 6-8
address space restrictions

data structure alignment A-3
instruction cache A-2
internal data RAM A-2
reserved memory A-2
stack frame alignment A-3

addressing registers and literals 3-4
aligment

literals 3-4

alignment
registers 3-4

alignment of registers and literals 3-4
alterbit 6-13
and 6-14
andnot 6-14
architecture reserved memory space 11-9
argument list 7-14
Arithmetic Controls (AC) register 3-17

condition code flags 3-18
initial image 11-18
initialization 3-18
integer overflow flag 3-20
no imprecise faults bit 3-20

arithmetic instructions 5-6
add, subtract, multiply or divide 5-7
extended-precision instructions 5-8
remainder and modulo instructions 5-8
shift and rotate instructions 5-9

arithmetic operations and data types 5-7
atadd 3-15, 6-15
atmod 3-8, 3-15, 6-16
atomic access 3-14
atomic add instruction 6-15
atomic instructions 5-17
Atomic instructions (LOCK signal) 15-30
atomic modify instruction 6-16
atomic operations 15-30

B
b 6-17
bal 6-18
balx 6-18
basic bus states 15-2
bbc 6-20
bbs 6-20
BCON register, see Bus Control (BCON) register
BCU, see Bus Controller Unit
be 6-22
bg 6-22
bge 6-22
big endian 3-16
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big-endian byte order
selecting

little endian byte order

selecting 12-11
bit definition 1-8
bit ordering 2-4
bit, bit field and byte instructions 5-10

bit field instructions 5-11
bit instructions 5-10
byte instructions 5-11

bits and bit fields 2-3
bl 6-22
ble 6-22
bne 6-22
bno 6-22
bo 6-22
boundary conditions

internal memory locations 12-12
internal memory-mapped locations 12-7
LMT boundaries 12-13
logical data template ranges 12-13

Boundary Scan
test logic 17-2

Boundary Scan (JTAG) 17-1
Boundary Scan Architecture 17-2
Boundary-Scan register 17-7
branch

and link extended instruction 6-18
and link instruction 6-18
check bit and branch if clear set instruction 6-20
check bit and branch if set instruction 6-20
conditional instructions 6-22
extended instruction 6-17
instruction 6-17

branch instructions 5-13
compare and branch instructions 5-15
conditional branch instructions 5-14
unconditional branch instructions 5-13

branch-and-link 7-1
returning from 7-22

branch-and-link instruction 7-1
coding calls 7-1

breakpoint
resource request message 10-7

Breakpoint Control (BPCON) register 10-7, 10-8, 
C-16

programming 10-8
breakpoints A-7
bswap 6-24
built-in self test 11-2
bus confidence self test 11-6
Bus Control (BCON) register 12-6, 12-7
Bus Control Unit (BCU) 15-22

changing byte order dynamically 12-13
selecting byte order 12-11

Bus Controller
boundary conditions 12-7
compared to previous i960 processors 12-4
logical memory attributes 12-2
memory attributes 12-1
physical memory attributes 12-1, 12-4

Bus Controller Unit (BCU) 12-1
bus width 12-5
PMCON initialization 12-6

bus controller unit (BCU) 15-2
bus master

arbitration timing diagram 15-33
bus signal groups 15-4
bus snooping 4-5
bus states with arbitration 15-3
bus transactions

basic read 15-9
basic write 15-11
burst transactions 15-11
bus width 15-7
data width 15-7

bus width
programming with PMCON register 12-5

bx 6-17
byte order

changing dynamically 12-13
selecting 12-11

byte swap instruction 6-24

C
cache load-and-lock mechanism 4-5
caching of interrupt-handling procedure 13-23
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caching of local register sets 7-9
frame fills 7-9
frame spills 7-9

call
extended instruction 6-28
instruction 6-25
system instruction 6-26

call 6-25, 7-2, 7-7
call and return instructions 5-16
call and return mechanism 7-1, 7-2

explicit calls 7-1
implicit calls 7-1
local register cache 7-3
local registers 7-2
procedure stack 7-3
register and stack management 7-4

frame pointer 7-4
previous frame pointer 7-6
return type field 7-6
stack pointer 7-5

stack frame 7-2
call and return operations 7-6

call operation 7-7
return operation 7-8

calls 6-26, 7-2, 7-7
call-trace mode 10-3
callx 6-28, 7-2, 7-7
check bit instruction 6-30
chkbit 6-30
clear bit instruction 6-31
clock input (CLKIN) 11-33
clrbit 6-31
cmpdeci 6-32
cmpdeco 6-32
cmpi 5-11, 6-34
cmpib 5-11
cmpibe 6-36
cmpibg 6-36
cmpibge 6-36
cmpibl 6-36
cmpible 6-36
cmpibne 6-36
cmpibno 6-36
cmpibo 6-36

cmpinci 6-33
cmpinco 6-33
cmpis 5-11
cmpo 5-11, 6-34
cmpobe 6-36
cmpobg 6-36
cmpobge 6-36
cmpobl 6-36
cmpoble 6-36
cmpobne 6-36
cold reset 11-3, 13-18
compare

and branch conditional instructions 6-36
and decrement integer instruction 6-32
and decrement ordinal instruction 6-32
and increment integer instruction 6-33
and increment ordinal instruction 6-33
integer conditional instruction 6-39
integer instruction 6-34
ordinal conditional instruction 6-39
ordinal instruction 6-34

comparison instructions 5-11
compare and conditional compare instructions 

5-11
compare and increment or decrement instructions 

5-12
test condition instructions 5-13

concmpi 6-39
concmpo 6-39
conditional fault instructions 5-17
control registers 3-1, 3-6

memory-mapped 3-5
overview 1-4

control table 3-1, 3-6, 3-12
Control Table Valid (CTV) bit 12-6
core architecture mechanisms A-1

D
Data Address Breakpoint (DAB) registers 10-9

programming 10-8
data alignment 2-4
data alignment in external memory 3-15
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data cache
coherency

I/0 and bus masters 4-9
fill policy 1-2, 4-6, 4-7
overview 1-2
visibility 4-9
write policy 4-7

data cache control instruction 6-41
Data Cache Enable (DCEN) bit 12-12
data control peripheral units A-6
data movement instructions 5-3

load address instruction 5-6
load instructions 5-5
move instructions 5-6

Data Register
timing diagram 17-19

data structures
control table 3-1, 3-6, 3-12
fault table 3-1, 3-12
initialization boot record 3-1, 3-12
interrupt stack 3-1, 3-12
interrupt table 3-1, 3-12
literals 3-4
local stack 3-1
Process Control Block (PRCB) 3-1, 3-12
supervisor stack 3-1, 3-12
system procedure table 3-1, 3-12
user stack 3-12

data types
bits and bit fields 2-3
data alignment 2-4
integers 2-2
literals 2-4
ordinals 2-2
supported 2-1
triple and quad words 2-3

dcctl 4-6, 4-9, 6-41
DCEN bit, see Data Cache Enable (DCEN) bit
debug

overview 10-1
debug instructions 5-17
decoupling capacitors 11-35
Default Logical Memory Configuration (DLMCON) 

register 12-2

design considerations
high frequency 11-36
interference 11-38
latchup 11-38
line termination 11-37

Device ID register 17-6
device ID Register 11-21
device ID register C-21
divi 6-47
divide integer instruction 6-47
divide ordinal instruction 6-47
divo 6-47
DLMCON registers

E
ediv 6-48
8-bit bus width byte enable encodings 15-8
8-bit wide data bus bursts 15-13
electromagnetic interference (EMI) 11-39
electrostatic interference (ESI) 11-39
emul 6-50
endianism

changing dynamically 12-13
selecting 12-11

eshro 6-51
explicit calls 7-1
extended addressing instructions 5-13
extended divide instruction 6-48
extended multiply instruction 6-50
extended shift right ordinal instruction 6-51
external bus

overview 1-4
external buses

data alignment 15-22
external interrupt pins (XINT7

0) 13-9
external memory requirements 3-14
external system requirements A-7
extract 6-52

F
FAIL# pin 11-6
fault conditional instructions 6-53
fault conditions 9-1
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fault handling
data structures 9-1
fault record 9-2, 9-6
fault table 9-2, 9-4
fault type and subtype numbers 9-2
fault types 9-4
local calls 9-2
multiple fault conditions 9-10
procedure invocation 9-6
return instruction pointer (RIP) 9-14
returning to an alternate point in the program 9-15
stack usage 9-6
supervisor stack 9-2
system procedure table 9-2
system-local calls 9-2
system-supervisor calls 9-2
user stack 9-2

fault record 9-6
address-of-faulting-instruction field 9-7
fault subtype field 9-7
fault type field 9-7
location 9-6, 9-9
structure 9-7

fault table 3-1, 3-12, 9-4
local-call entry 9-6
location 9-4
system-call entry 9-6
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faulte 6-53
faultg 6-53
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faulto 6-53

faults A-6
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6-83, 6-101, 6-107, 6-112
ARITHMETIC.ZERO_DIVIDE 6-47, 6-48, 

6-76, 6-90
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6-48, 6-57, 6-65, 6-67, 6-81, 6-107, 6-117
OPERATION.UNALIGNED 6-72, 6-107
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overview 1-5
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TRACE.MARK 6-56, 6-74
TRACE.PRERETURN 6-92
TYPE.MISMATCH 6-45, 6-57, 6-65, 6-67, 

6-68, 6-69, 6-78, 6-107, 6-117
field definition 1-8
flag definition 1-8
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flushreg 6-55
fmark 6-56
force mark instruction 6-56
FP, see Frame Pointer
frame fills 7-9
Frame Pointer (FP) 7-4

location 3-3
frame spills 7-9

G
global registers 3-1, 3-2

overview 1-7
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halt CPU instruction 6-57
HALT mode

entering and exiting 16-1
operation 16-1
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IBR, see initialization boot record
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IEEE Std. 1149.1 17-2
IMI 11-1, 11-9
implementation-specific features A-1
implicit calls 7-1, 9-2
imprecise faults 5-23
index with displacement 2-8
indivisible access 3-14
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initialization 11-1, 11-2
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hardware requirements 11-33
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power and ground 11-34

initialization boot record 3-1, 3-12
Initialization Boot Record (IBR) 11-1, 11-12, 

11-14
initialization mechanism A-5
initialization requirements

architecture reserved memory space 11-9
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data structures 11-10
Process Control Block 11-14

Instruction Breakpoint (IBP) registers 10-10
instruction breakpoint modes

programming 10-11
instruction cache 3-1, 3-16

coherency 4-5
configuration 3-16
enabling and disabling 11-18
locking instructions 4-5
overview 1-2, 4-4
visibility 4-5
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instruction encoding format 5-2

instruction optimizations 5-19
Instruction Pointer (IP) register 3-17
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timing diagram 17-18
Instruction set
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 6-8

ADD 6-8

addc 6-11
addi 6-12
addie 6-8
addig 6-8
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addil 6-8
addile 6-8
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atmod 3-15, 6-16
b 6-17
bal 6-18
balx 6-18
bbc 6-20
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call 6-25, 7-2, 7-7
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mark 6-74
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modi 6-76
modify 6-77
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movq 6-80
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mulo 6-83
nand 6-84
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stos 2-3
stq 6-104
stt 6-104
subc 6-108
subi 6-112
subie 6-109
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subino 6-109
subio 6-109
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testg 6-118
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modification 4-1
overview 1-2
size 4-1
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interrupt

timer 13-2
Interrupt Control (ICON) register 1-3

memory-mapped addresses 13-12
interrupt controller 13-1

configuration 13-20
interrupt pins 13-9
overview 13-1
program interface 13-1
programmer interface 13-11
setup 13-20

Interrupt Controller Unit (ICU) 1-3
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saving 13-8
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interrupt procedure pointer 8-5
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overview 8-1
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L
ld 2-2, 6-70
lda 6-73
ldib 2-2, 6-70
ldis 2-2
ldis 2-2, 6-70
ldl 3-4, 6-70
ldob 2-3, 6-70
ldos 2-3, 6-70
ldq 6-70
ldt 6-70
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call 7-2
callx 7-2
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overview 1-3, 4-2
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overview 1-7
usage 7-2
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LOCK pin A-7
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effective range 12-10
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programming 12-8
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12-2
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programming 12-8
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enabling 12-12
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modifying 12-13
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mark 6-74
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big endian byte order 3-16
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indivisible access 3-14
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3-15
little endian byte order 3-16
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management 3-13
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examples 2-8
index with displacement 2-8
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memory-mapped control registers 3-5
Memory-Mapped Registers (MMR) 3-6
MMR, see Memory-Mapped Registers (MMR)
modac 6-75
modi 6-76
modify 6-77
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modify process controls instruction 6-78
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modpc 6-78, 10-3
modtc 6-79, 10-2
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mov 6-80
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movl 6-80
movq 6-80
movt 6-80
muli 6-83
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multiple fault conditions 9-10
multiply integer instruction 6-83
multiply ordinal instruction 6-83
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Non-Maskable Interrupt (NMI) 13-2
Non-Maskable Interrupt (NMI) pin 13-9
nor 6-85
not 6-86
notand 6-86
notbit 6-87
notor 6-88
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On-Circuit Emulation (ONCE) mode 11-1, 17-1
or 6-89
ordinals 2-2

sign and sign extension 2-3
sizes 2-2
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output pins 11-35

P
parameter passing 7-13

argument list 7-14
by reference 7-14
by value 7-14

PC register, see Process Controls (PC) register
pending interrupts 8-5

encoding 8-5
interrupt procedure pointer 8-5
pending priorities field 8-5

performance optimization 5-19
PFP, see Previous Frame Pointer (PFP)
Physical Memory Configuration (PMCON) registers 

12-1
application modification 12-8
initial values 12-6

PMCON registers
power and ground planes 11-34
powerup/reset initialization

timer powerup 14-10
PRCB, see Processor Control Block (PRCB)
prereturn-trace mode 10-4

Previous Frame Pointer (PFP) 7-4, 7-6
location 3-3
r0 7-20

priority-31 interrupts 8-3, 13-9
procedure calls

branch-and-link 7-1
call and return mechanism 7-1
leaf procedures 7-1, Glossary-3

procedure stack 7-3
growth 7-3

Process Control Block (PRCB) 3-1, 3-12, 11-1, 
11-14

configuration 11-15
register cache configuration word 11-18

Process Controls (PC) register 3-20
execution mode flag 3-20
initialization 3-22
modification 3-21
modpc 3-21
priority field 3-21
processor state flag 3-21
trace enable bit 3-21
trace fault pending flag 3-21

processor initialization 11-1
processor management instructions 5-18
processor state registers 3-1, 3-17

Arithmetic Controls (AC) register 3-17
Instruction Pointer (IP) register 3-17
Process Controls (PC) register 3-20
Trace Controls (TC) register 3-22

programming
logical memory attributes 12-12

R
r0 Previous Frame Pointer (PFP) 7-20
region boundaries

bus transactions across 12-7
register access 13-18
register addressing and alignment 3-5
register cache 3-1
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register scoreboarding 3-4
example 3-4
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addressing 3-4
Boundary-Scan 17-7
Breakpoint Control (BPCON) 10-7
Bus Control (BCON) 12-7
control 3-6

memory-mapped 3-5
device ID 11-21, C-21
Instruction 17-5
Interrupt Control (ICON) 1-3, 13-12
Interrupt Map Control (IMAP0-IMAP2) 1-3
Interrupt Mapping (IMAP0-IMAP2) 13-14
Interrupt Mask (IMSK) 1-3, 13-16
Interrupt Pending (IPND) 1-3, 13-16, C-12
Logical Memory Templates (LMTs) 12-12
naming conventions 1-7
TCR 14-6
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remainder ordinal instruction 6-90
remi 6-90
remo 6-90
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reserved memory 1-6
reserving frames in the local register cache 13-23
reset operation

register values 11-5
reset state 11-3
ret 6-91
Return Instruction Pointer (RIP) 7-4

location 3-3
return operation 7-8
return type field 7-6
RIP, see Return Instruction Pointer (RIP)
rotate 6-94
Run Built-In Self-Test (RUNBIST) register 17-7

S
SALIGN A-3
saving the interrupt mask 13-8
scanbit 6-95
scanbyte 6-96
scoreboarding, see register scoreboarding
sele 5-6, 6-97
Select Based on Equal 5-6
Select Based on Less or Equal 5-6
Select Based on Not Equal 5-6
Select Based on Ordered 5-6
Select Based on Unordered 5-6
select instructions 6-97
self test (STEST) pin 11-6
selg 5-6, 6-97
selge 5-6, 6-97
sell 5-6, 6-97
selle 5-6, 6-97
selne 5-6, 6-97
selno 5-6, 6-97
selo 5-6, 6-97
setbit 6-99
shift instructions 6-100
shli 6-100
shlo 6-100
shrdi 6-100
shri 6-100
shro 6-100
single processor as bus master 15-32
16-bit bus width byte enable encodings 15-8
16-bit wide data bus bursts 15-12
SP, see Stack Pointer
spanbit 6-103
SRC/DEST parameter encodings 10-7
st 2-2, 6-104
stack frame

allocation 7-2
Stack Pointer (SP) 7-4, 7-5

location 3-3
STEST 11-6
stib 2-2, 6-104
stis 2-2, 6-104
stl 6-104
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stob 2-3, 6-104
store instructions 5-5, 6-104
stos 2-3
stq 6-104
stt 6-104
subc 6-108
subi 6-112
subie 6-109
subig 6-109
subige 6-109
subil 6-109
subile 6-109
subine 6-109
subino 6-109
subio 6-109
subo 6-112
suboe 6-109
subog 6-109
suboge 6-109
subol 6-109
subole 6-109
subone 6-109
subono 6-109
suboo 6-109
subtract

conditional instructions 6-109
integer instruction 6-112
ordinal instruction 6-112
ordinal with carry instruction 6-108

supervisor calls 7-2
supervisor mode resources 3-22
supervisor space family registers and tables 3-9
supervisor stack 3-1, 3-12
supervisor-trace mode 10-3
syncf 6-113, 9-20
synchronize faults instruction 6-113
sysctl 1-2, 3-8, 4-4, 4-5, 6-114, 10-6
system calls 7-2, 7-16

calls 7-2
system-local 7-2, 9-2
system-supervisor 7-2, 9-2

system control instruction 6-114
system procedure table 3-1, 3-12

T
Test Access Port (TAP) controller 17-2

architecture 17-3
Asynchronous Reset Input (TRST) pin 17-5
block diagram 17-3
Serial Test Data Output (TDO) pin 17-5
state diagram 17-4
Test Clock (TCK) pin 17-5
Test Mode Select (TMS) pin 17-5

test features 17-2
test instructions 6-118
Test Mode Select (TMS) line 17-2
teste 6-118
testg 6-118
testge 6-118
testl 6-118
testle 6-118
testne 6-118
testno 6-118
testo 6-118
32-bit bus width byte enable encodings 15-8
32-bit wide data bus bursts 15-12
three-state output pins 11-35
Timer Count Register (TCR) 14-6
timer interrupt 13-2
timer memory-mapped addresses 14-2
Timer Mode Register

timer mode control bit summary 14-5
Timer Mode Register (TMR)

terminal count 14-3
timer clock encodings 14-6

timer units
HALT mode operation 16-2

timers
overview 1-4

Trace Controls (TC) register 3-22, 10-2
trace events 10-1

hardware breakpoint registers 10-1
mark and fmark 10-1
PC and TC registers 10-1

trace-fault-pending flag 10-3
TTL input pins 11-36
two-word burst write transaction 15-14
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user space family registers and tables 3-11
user stack 3-12
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vector entries 8-4

structure 8-5

W
warm reset 11-3, 13-18
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triple and quad 2-3

X
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xor 6-120
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